Publications by authors named "Jo Demeester"

Neurodevelopmental and neurodegenerative disorders are characterized by subtle alterations in synaptic connections and perturbed neuronal network functionality. A hallmark of neuronal connectivity is the presence of dendritic spines, micron-sized protrusions of the dendritic shaft that compartmentalize single synapses to fine-tune synaptic strength. However, accurate quantification of spine density and morphology in mature neuronal networks is hampered by the lack of targeted labeling strategies.

View Article and Find Full Text PDF

Light sheet microscopy is a relatively new form of fluorescence microscopy that has been receiving a lot of attention recently. The strong points of the technique, such as high signal to noise ratio and its reduced photodamage of fluorescently labelled samples, come from its unique feature to illuminate only a thin plane in the sample that coincides with the focal plane of the detection lens. Typically this requires two closely positioned perpendicular objective lenses, one for detection and one for illumination.

View Article and Find Full Text PDF

In gene therapy, endosomal escape represents a major bottleneck since nanoparticles often remain entrapped inside endosomes and are trafficked toward the lysosomes for degradation. A detailed understanding of the endosomal barrier would be beneficial for developing rational strategies to improve transfection and endosomal escape. By visualizing individual endosomal escape events in live cells, we obtain insight into mechanistic factors that influence proton sponge-based endosomal escape.

View Article and Find Full Text PDF

Nucleic acid biopharmaceuticals are being investigated as potential therapeutics. They need to be incorporated into a biocompatible carrier so as to overcome several biological barriers. Rational development of suitable nanocarriers requires high-quality characterization techniques.

View Article and Find Full Text PDF

Intracellular delivery of functional compounds into living cells is of great importance for cell biology as well as therapeutic applications. Often it is sufficient that the compound of interest (being a molecule or nanoparticle) is delivered to the cell population as a whole. However, there are applications that would benefit considerably from the possibility of delivering a compound to a certain subpopulation of cells, or even in selected single cells.

View Article and Find Full Text PDF

Background: Nanoparticle interactions with cellular membranes and the kinetics of their transport and localization are important determinants of their functionality and their biological consequences. Understanding these phenomena is fundamental for the translation of such NPs from in vitro to in vivo systems for bioimaging and medical applications. Two CdSe/ZnS quantum dots (QD) with differing surface functionality (NH or COOH moieties) were used here for investigating the intracellular uptake and transport kinetics of these QDs.

View Article and Find Full Text PDF

Intravitreal administration of nanomedicines could be valuable for retinal gene therapy, if their mobility in the vitreous and therapeutic efficacy in the target cells can be guaranteed. Hyaluronic acid (HA) as an electrostatic coating of polymeric gene nanomedicines has proven to be beneficial on both accounts. While electrostatic coating provides an easy way of coating cationic nanoparticles, the stability of electrostatic complexes in vivo is uncertain.

View Article and Find Full Text PDF

Long-term in vivo imaging of cells is crucial for the understanding of cellular fate in biological processes in cancer research, immunology, or in cell-based therapies such as beta cell transplantation in type I diabetes or stem cell therapy. Traditionally, cell labeling with the desired contrast agent occurs ex vivo via spontaneous endocytosis, which is a variable and slow process that requires optimization for each particular label-cell type combination. Following endocytic uptake, the contrast agents mostly remain entrapped in the endolysosomal compartment, which leads to signal instability, cytotoxicity, and asymmetric inheritance of the labels upon cell division.

View Article and Find Full Text PDF

Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge in spite of its importance for a wide range of biomedical applications. In drug delivery, for instance, it is essential that aggregation of protein-based drugs is avoided as it may alter their efficacy or elicit immune responses. Similarly it is of interest to determine which size of molecules can pass through biological barriers in vivo to diagnose pathologies, such as sepsis.

View Article and Find Full Text PDF

Following intravenous injection of anti-cancer nanomedicines, many barriers need to be overcome en route to the tumor. Cell-mediated delivery of nanoparticles (NPs) is promising in terms of overcoming several of these barriers based on the tumoritropic migratory properties of particular cell types. This guided transport aims to enhance the NP accumulation in the tumor and moreover enhance the infiltration of regions that are typically inaccessible for free NPs.

View Article and Find Full Text PDF

The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers.

View Article and Find Full Text PDF

Inhalation therapy with small interfering RNA (siRNA) is a promising approach in the treatment of pulmonary disorders. However, clinical translation is severely limited by the lack of suitable delivery platforms. In this study, we aim to address this limitation by designing a novel bioinspired hybrid nanoparticle with a core-shell nanoarchitecture, consisting of a siRNA-loaded dextran nanogel (siNG) core and a pulmonary surfactant (Curosurf®) outer shell.

View Article and Find Full Text PDF

Retinal gene therapy could potentially affect the lives of millions of people suffering from blinding disorders. Yet, one of the major hurdles remains the delivery of therapeutic nucleic acids to the retinal target cells. Due to the different barriers that need to be overcome in case of topical or systemic administration, intravitreal injection is an attractive alternative administration route for large macromolecular therapeutics.

View Article and Find Full Text PDF

Encapsulation of antibiotics into nanoparticles is a potential strategy to eradicate biofilms. To allow further optimization of nanomedicines for biofilm eradication, the influence of the nanoparticle size on the penetration into dense biofilm clusters needs to be investigated. In the present study, the penetration of nanoparticles with diameters ranging from 40 to 550 nm into two biofilms, Burkholderia multivorans LMG 18825 and Pseudomonas aeruginosa LMG 27622, was evaluated using confocal microscopy.

View Article and Find Full Text PDF

Many macromolecular therapeutics could potentially treat genetic disorders and cancer. They have, however, not yet reached the clinical stage owing to a lack of suitable carriers that can bring the therapeutics from the administration site to the subcellular site in target cells. One of the reasons that is hindering the development of such carriers is the limited knowledge of their transport dynamics and intracellular processing.

View Article and Find Full Text PDF

The interest in using quantum dots (QDots) as highly fluorescent and photostable nanoparticles in biomedicine is vastly increasing. One major hurdle that slows down the (pre)clinical translation of QDots is their potential toxicity. Several strategies have been employed to optimize common core-shell QDots, such as the use of gradient alloy (GA)-QDots.

View Article and Find Full Text PDF

There is a great interest in delivering macromolecular agents into living cells for therapeutic purposes, such as siRNA for gene silencing. Although substantial effort has gone into designing nonviral nanocarriers for delivering macromolecules into cells, translocation of the therapeutic molecules from the endosomes after endocytosis into the cytoplasm remains a major bottleneck. Laser-induced photoporation, especially in combination with gold nanoparticles, is an alternative physical method that is receiving increasing attention for delivering macromolecules in cells.

View Article and Find Full Text PDF

The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity.

View Article and Find Full Text PDF

Biofilms are matrix-enclosed communities of bacteria that show increased antibiotic resistance and the capability to evade the immune system. They can cause recalcitrant infections which cannot be cured with classical antibiotic therapy. Drug delivery by lipid or polymer nanoparticles is considered a promising strategy for overcoming biofilm resistance.

View Article and Find Full Text PDF

The development of biotechnological pharmaceutics, like macro- and nanocarriers, can benefit greatly from studying their characteristics in situ using advanced fluorescence microscopy methods. While choosing the optimal labeling method for visualizing the carrier or its cargo is crucial, it seldom receives attention. The possibility that high labeling densities alter the intracellular processing of the molecule is considered, but how and at which point this interference happens is not yet studied.

View Article and Find Full Text PDF

Cell-derived membrane vesicles that are released in biofluids, like blood or saliva, are emerging as potential non-invasive biomarkers for diseases, such as cancer. Techniques capable of measuring the size and concentration of membrane vesicles directly in biofluids are urgently needed. Fluorescence single particle tracking microscopy has the potential of doing exactly that by labelling the membrane vesicles with a fluorescent label and analysing their Brownian motion in the biofluid.

View Article and Find Full Text PDF

Fluorescence recovery after photobleaching (FRAP) is one of the most useful microscopy techniques for studying the mobility of molecules in terms of a diffusion coefficient. Here, we describe a FRAP method that allows such measurements, relying on the photobleaching of a rectangular region of any size and aspect ratio. We start with a brief overview of the rectangle FRAP theory, and next we provide guidelines for performing FRAP measurements, including a discussion of the experimental setup and the data analysis.

View Article and Find Full Text PDF

Aim: Cell detection by MRI requires high doses of contrast agent for generating image contrast. Therefore, there is a constant need to develop improved systems that further increase sensitivity, and which could be used in clinical settings. In this study, we devised layer-by-layer particles and tested their potential for cell labeling.

View Article and Find Full Text PDF

The advent of nanotechnology has revolutionized drug delivery in terms of improving drug efficacy and safety. Both polymer-based and lipid-based drug-loaded nanocarriers have demonstrated clinical benefit to date. However, to address the multifaceted drug delivery challenges ahead and further expand the spectrum of therapeutic applications, hybrid lipid-polymer nanocomposites have been designed to merge the beneficial features of both polymeric drug delivery systems and liposomes in a single nanocarrier.

View Article and Find Full Text PDF