Muscle fibers are the largest cells in the body, and one of its few syncytia. Individual cell sizes are variable and adaptable, but what governs cell size has been unclear. We find that muscle fibers are DNA scarce compared to other cells, and that the nuclear number (N) adheres to the relationship N = aV where V is the cytoplasmic volume.
View Article and Find Full Text PDFTransport distances in skeletal muscle fibers are mitigated by these cells having multiple nuclei. We have studied mouse living slow (soleus) and fast (extensor digitorum longus) muscle fibers in situ and determined cellular dimensions and the positions of all the nuclei within fiber segments. We modeled the effect of placing nuclei optimally and randomly using the nuclei as the origin of a transportation network.
View Article and Find Full Text PDFPreviously trained mouse muscles acquire strength and volume faster than naïve muscles; it has been suggested that this is related to increased myonuclear density. The present study aimed to determine whether a previously strength-trained leg (mem-leg) would respond better to a period of strength training than a previously untrained leg (con-leg). Nine men and 10 women performed unilateral strength training (T1) for 10 wk, followed by 20 wk of detraining (DT) and a 5-wk bilateral retraining period (T2).
View Article and Find Full Text PDFAim: Cachexia is a severe wasting disorder involving loss of body- and muscle mass reducing survival and quality of life in cancer patients. We aim at determining if cachexia is a mere perturbation of the protein balance or if the condition also involves a degenerative loss of myonuclei within the fibre syncytia or loss of whole muscle fibres.
Methods: We induced cachexia by xenografting PC3 prostate cancer cells in nu/nu mice.
Resistance towards deltamethrin (DMT) in the crustacean ectoparasite Lepeophtheirus salmonis (Caligidae) is a problem on fish farms lining the North Atlantic Ocean. Two Norwegian strains with different susceptibility towards DMT were crossed in the parental generation (P0), females from a sensitive strain were crossed with males from a resistant strain and vice versa. Individual susceptibility towards DMT was assessed in the second filial generation (F2).
View Article and Find Full Text PDFThe largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles.
View Article and Find Full Text PDFA central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null background (Mtn(-/-)/Errγ(Tg/+)) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity.
View Article and Find Full Text PDFIt is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electrical activity patterns, isometric contractions induced twofold more hypertrophy than contractions with 50-60% of the isometric force. The number of myonuclei and the RNA levels of myogenin and myogenic regulatory factor 4 were increased with high load, suggesting that activation of satellite cells is mechano dependent.
View Article and Find Full Text PDFVaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined.
View Article and Find Full Text PDFMechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX) is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein.
View Article and Find Full Text PDFPrevious strength training with or without the use of anabolic steroids facilitates subsequent re-acquisition of muscle mass even after long intervening periods of inactivity. Based on in vivo and ex vivo microscopy we here propose a cellular memory mechanism residing in the muscle cells. Female mice were treated with testosterone propionate for 14 days, inducing a 66% increase in the number of myonuclei and a 77% increase in fibre cross-sectional area.
View Article and Find Full Text PDFExercise influences muscle phenotype by the specific pattern of action potentials delivered to the muscle, triggering intracellular signalling pathways. PO2 can be reduced by an order of magnitude in working muscle. In humans, carriers of a hyperactive polymorphism of the transcription factor hypoxia inducible factor 1α (HIF-1α) have 50% more fast fibres, and this polymorphism is prevalent among strength athletes.
View Article and Find Full Text PDFAccording to the current paradigm, muscle nuclei serve a certain cytoplasmic domain. To preserve the domain size, it is believed that nuclei are injected from satellite cells fusing to fibres undergoing hypertrophy, and lost by apoptosis during atrophy. Based on single fibre observations in and ex vivo we suggest that nuclear domains are not as constant as is often indicated.
View Article and Find Full Text PDFNumerous studies have suggested that muscle atrophy is accompanied by apoptotic loss of myonuclei and therefore recovery would require replenishment by muscle stem cells. We used in vivo time-lapse microscopy to observe the loss and replenishment of myonuclei in murine muscle fibers following induced muscle atrophy. To our surprise, imaging of single fibers for up to 28 days did not support the concept of nuclear loss during atrophy.
View Article and Find Full Text PDFGephyrin is required for the formation of clusters of the glycine receptor (GlyR) in the neuronal postsynaptic membrane. It can make trimers and dimers through its N- and C-terminal G and E domains, respectively. Gephyrin oligomerization could thus create a submembrane lattice providing GlyR-binding sites.
View Article and Find Full Text PDF