Publications by authors named "Jmi Maarek"

Significance: We present an approach to estimate with simple instrumentation the amount of red blood cells in the skin microvasculature, designated as parameter LRBC. Variations of parameter LRBC are shown to reflect local changes in the quantity of skin red blood cells during a venous occlusion challenge.

Aim: To validate a simple algebraic model of light transport in skin using the Monte Carlo method and to develop a measure of the red blood cell content in skin microvessels using the Monte Carlo predictions; to guide the development of an instrument to measure experimentally variations of the amount of red blood cells in the skin.

View Article and Find Full Text PDF

This paper describes the adaptation of a flipped Biomedical Electronics course with laboratories to remote learning at the start of the Covid-19 pandemic. In class collaborative work on problem sets was replaced by group work (4-5 students) in Zoom breakout sessions. When the groups assembled at random for each class had sufficiently progressed on a problem, a detailed solution was typed on the Multisim circuit simulator desktop (National Instruments) shared on the instructor screen.

View Article and Find Full Text PDF

Studies of brain functional activation during spatial navigation using electrophysiology and immediate-early gene responses have typically targeted a limited number of brain regions. Our study provides the first whole brain analysis of cerebral activation during retrieval of spatial memory in the freely-moving rat. Rats (LEARNERS) were trained in the Barnes maze, an allocentric spatial navigation task, while CONTROLS received passive exposure.

View Article and Find Full Text PDF

Intradialytic hypotensive events (IDH) accompanied by deleterious decreases of the cardiac output complicate up to 25% of hemodialysis treatments. Monitoring options available to track hemodynamic changes during hemodialysis have been found ineffective to anticipate the occurrence of IDH. We have assembled opto-electronic instrumentation that uses the fluorescence of a small bolus of indocyanine green dye injected in the hemodialysis circuit to estimate cardiac output and blood volume based on indicator dilution principles in patients receiving hemodialysis.

View Article and Find Full Text PDF

Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map.

View Article and Find Full Text PDF

Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson's disease subjects, including disconnection of the dorsolateral striatum.

View Article and Find Full Text PDF

This study assessed functional brain activation in rats during expectation of visceral pain. Male rats were trained in step-down passive avoidance (PA) for 2 days. Upon stepping down from a platform, conditioned animals received noxious colorectal distension delivered through a colorectal balloon, whereas the balloon in control rats remained uninflated.

View Article and Find Full Text PDF

Antenatal maternal stress has been shown in rodent models and in humans to result in altered behavioral and neuroendocrine responses, yet little is known about its effects on functional brain activation. Pregnant female rats received a daily foot-shock stress or sham-stress two days after testing plug-positive and continuing for the duration of their pregnancy. Adult male offspring (age 14 weeks) with and without prior maternal stress (MS) were exposed to an auditory fear conditioning (CF) paradigm.

View Article and Find Full Text PDF

We report the use of a multi-layer printed coil circuit for powering (36-94 mW) an implantable microbolus infusion pump (MIP) that can be activated remotely for use in drug infusion in nontethered, freely moving small animals. This implantable device provides a unique experimental tool with applications in the fields of animal behavior, pharmacology, physiology, and functional brain imaging. Two different designs are described: a battery-less pump usable when the animal is inside a home-cage surrounded by a primary inductive coil and a pump powered by a rechargeable battery that can be used for studies outside the home-cage.

View Article and Find Full Text PDF

We present a low power, on demand Parylene MEMS electrothermal valve. A novel Omega-shaped thermal resistive element requires low power (approximately mW) and enables rapid valve opening (approximately ms). Using both finite element analysis and valve opening experiments, a robust resistive element design for improved valve opening performance in water was obtained.

View Article and Find Full Text PDF

The first microelectromechanical-system normally closed electrothermal valve constructed using Parylene C is described, which enables both low power (in milliwatts) and rapid operation (in milliseconds). This low-power valve is well suited for applications in wirelessly controlled implantable drug-delivery systems. The simple design was analyzed using both theory and modeling and then characterized in benchtop experiments.

View Article and Find Full Text PDF

There is considerable interest in assessing cardiovascular function noninvasively in patients receiving hemodialysis. A possible approach is to measure the blood concentration of bolus-injected indocyanine green dye and to apply the dye-dilution method for estimating cardiac output and blood volume. Blood ICG concentration can be derived from a measurement of the ICG fluorescence through the dialysis tubing if a simple and unique calibration relationship can be established between transmural fluorescence intensity and blood ICG concentration.

View Article and Find Full Text PDF

Studies in healthy human subjects and patients with irritable bowel syndrome suggest sex differences in cerebral nociceptive processing. Here we examine sex differences in functional brain activation in the rat during colorectal distention (CRD), a preclinical model of acute visceral pain. [(14)C]-iodoantipyrine was injected intravenously in awake, non-restrained female rats during 60- or 0-mmHg CRD while electromyographic abdominal activity (EMG) and pain behavior were recorded.

View Article and Find Full Text PDF

A dilemma in behavioral brain mapping is that conventional techniques immobilize the subject, extinguishing all but the simplest behaviors. This is avoided if brain activation is imaged after completion of the behavior and tissue capture of the tracer. A single-pass flow tracer proposed for positron emission tomography (PET) is a radiolabeled copper(II) complex of pyruvaldehyde bis(N(4)-methylthiosemicarbazone), [Cu(64)]-PTSM.

View Article and Find Full Text PDF

Brain mapping in the freely moving animal is useful for studying motor circuits, not only because it avoids the potential confound of sedation or restraints, but because activated brain states may serve to accentuate differences that only manifest partially while a subject is in the resting state. Perfusion or metabolic mapping using autoradiography allows one to examine changes in brain function at the circuit level across the entire brain with a spatial resolution (approximately 100 micro) appropriate for the rat or mouse brain, and a temporal resolution (seconds-minutes) sufficient for capturing acute brain changes. Here we summarize the application of these methods to the functional brain mapping of behaviors involving locomotion of small animals, methods for the three-dimensional reconstruction of the brain from autoradiographic sections, voxel based analysis of the whole brain, and generation of maps of the flattened rat cortex.

View Article and Find Full Text PDF
Article Synopsis
  • Preclinical drug development for visceral pain primarily uses restrained rodents to study pain responses, but the relevance to human pain experiences remains uncertain.
  • The study involved male rats undergoing colorectal distension (CRD) while measuring abdominal EMG and cerebral blood flow (rCBF) via advanced techniques.
  • Results showed that CRD induced notable increases in both EMG activity and behavioral pain scores, with rCBF changes observed in various brain regions associated with sensory and emotional pain processing.
  • This suggests that while CRD in rats can be a valid model for studying human visceral pain, there are more complex brain responses that traditional pain measures may not capture.
View Article and Find Full Text PDF

We describe a method for the measurement, analysis and display of cerebral cortical data obtained from coronal brain sections of the adult rat. In this method, regions-of-interest (ROI) are selected in the cortical mantle in a semiautomated fashion using a radial grid overlay, spaced in 15 degrees intervals from the midline. ROI measurements of intensity are mapped on a flattened two-dimensional surface.

View Article and Find Full Text PDF

Exercise training (ET) causes functional and morphologic changes in normal and injured brain. While studies have examined effects of short-term (same day) training on functional brain activation, less work has evaluated effects of long-term training, in particular treadmill running. An improved understanding is relevant as changes in neural reorganization typically require days to weeks, and treadmill training is a component of many neurorehabilitation programs.

View Article and Find Full Text PDF

To evaluate functional neuronal compensation after partial damage to the nigrostriatal system, we lesioned rats unilaterally in the striatum with 6-hydroxydopamine. Five weeks later, cerebral perfusion was mapped at rest or during treadmill walking using [(14)C]-iodoantipyrine. Regional CBF-related tissue radioactivity (CBF-TR) was quantified by autoradiography and analyzed by statistical parametric mapping and region-of- interest analysis.

View Article and Find Full Text PDF

Background: The authors previously validated in an animal model a new indicator dilution technique for measuring cardiac output and circulating blood volume by recording transcutaneously the fluorescence of circulating indocyanine green with an optical probe placed on the skin surface. The current study compared fluorescence dilution recordings recorded from several locations on the human face in terms of signal intensity and stability and estimated the subjects' cardiac output and circulating blood volume from the recordings.

Methods: Fluorescence dilution traces were recorded transcutaneously in six healthy human volunteers after rapid intravenous injection of 1 mg indocyanine green.

View Article and Find Full Text PDF

We describe the design and testing of an inductive coupling system used to power an implantable minipump for applications in ambulating rats. A 2 MHz class-E oscillator driver powered a coil transmitter wound around a 33-cm-diameter rat cage. A receiver coil, a filtered rectifier, and a voltage-sensitive switch powered the implant.

View Article and Find Full Text PDF

Conditioned fear (CF) is one of the most frequently used behavioral paradigms; however, little work has mapped changes in cerebral perfusion during CF in the rat-the species which has dominated CF research. Adult rats carrying an implanted minipump were exposed to a tone (controls, n = 8) or a tone conditioned in association with footshocks (CS group, n = 9). During reexposure to the tone 24 h later, animals were injected intravenously by remote activation with [14C]-iodoantipyrine using the pump.

View Article and Find Full Text PDF

Formation of fibrin sleeves around catheter tips is a central factor in catheter failure during chronic implantation, and such tissue growth can occur despite administration of anticoagulants. We developed a novel method for monitoring catheter patency. This method recognizes the progressive nature of catheter occlusion, and tracks this process over time through measurement of changes in catheter resistance to a standardized 1 mL bolus infusion from a pressurized reservoir.

View Article and Find Full Text PDF

Background: Cardiac output and circulating blood volume are important parameters for assessing cardiac function in the intensive care setting and during major surgeries. The authors tested in an animal model of hemorrhagic hypovolemia the feasibility of measuring these parameters simultaneously by transcutaneous fluorescence monitoring of an intravenous bolus injection of indocyanine green.

Methods: Fluorescence dilution cardiac output was measured in seven anesthetized rabbits and compared to thermodilution cardiac output.

View Article and Find Full Text PDF

Expression of many fundamental mammalian behaviors such as, for example, aggression, mating, foraging or social behaviors, depend on locomotor activity. A central dilemma in the functional neuroimaging of these behaviors has been the fact that conventional neuroimaging techniques generally rely on immobilization of the subject, which extinguishes all but the simplest activity. Ideally, imaging could occur in freely moving subjects, while presenting minimal interference with the subject's natural behavior.

View Article and Find Full Text PDF