Perovskite single crystals with excellent physical properties have broad prospects in the field of optoelectronics. However, the presence of dangling bonds, surface dislocations, and chemical impurities results in high surface defect density and sensitivity to humidity. Unfortunately, there are relatively few surface engineering strategies for single perovskite single crystals.
View Article and Find Full Text PDFHigh-sensitivity organic photodetectors (OPDs) with strong near-infrared (NIR) photoresponse have attracted enormous attention due to potential applications in emerging technologies. However, few organic semiconductors have been reported with photoelectric response beyond ~1.1 μm, the detection limit of silicon detectors.
View Article and Find Full Text PDFLow-bandgap tin (Sn)-lead (Pb) halide perovskites can achieve near-infrared response for photodetectors. However, the Sn-based devices suffer from notorious instability and high defect densities due to the oxidation propensity of Sn . Herein, a multifunctional additive 4-amino-2,3,5,6-tetrafluorobenzoic acid (ATFBA) is presented, which can passivate surface defects and inhibit the oxidation of Sn through hydrogen bonds and chelation coordination from the terminal amino and carboxyl groups.
View Article and Find Full Text PDFMetal halide perovskite materials, which combine outstanding physical properties, large absorption coefficient, tailored composition, and low-cost solution-processing, have aroused wide attention for use in various optoelectronic devices. Recently, perovskite single crystals have been rapidly outpacing traditional semiconductor materials in the field of radiation detection. As a prerequisite, achieving high-quality single crystals under controllable solution-phase growth must be tackled to fulfill their full potential as a new paradigm in this stagnated field.
View Article and Find Full Text PDFPhotodetectors with broadband response spectrum have attracted great interest in many application areas such as imaging, gas sensing, and night vision. Here, a high performance broadband photodetector is demonstrated with inorganic perovskite CsPbBr /GeSn heterojunction, detection range can be covered from 450 to 2200 nm. The responsivity of heterojunction device can achieve as high as 129 mA W under illuminated light of 532 nm, which is 4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
Multifarious electron transport layers (ETLs), especially fullerene derivatives, have been applied in organic-inorganic hybrid perovskite (OIHP) devices owing to their superior optoelectronic properties. However, a PCBM Lewis acid molecule can only passivate the iodine-rich defect sites, which cannot solve the problem of uncoordinated Pb and water oxygen erosion due to the high volatility of halide I and the hydrophilicity of organic cation MA. Herein, we introduce a Lewis base, TBA-Azo with an electron-donating Azo moiety, and hydrophobic long alkyl chains into the PCBM layer to form a multifunctional bulk-mixed electron transport layer (MBE).
View Article and Find Full Text PDFOrganic photodetectors (OPDs), which usually work as photodiodes, photoconductors, or phototransistors, have emerged as candidates for next-generation light sensing. However, low response speed caused by low carrier mobility and resistance-capacitance (RC) time constant, severely hinders the commercialization of OPDs. Herein, the authors demonstrate a state-of-the-art OPD with a record response speed of 146.
View Article and Find Full Text PDFOrganolead trihalide perovskite single crystals (SCs) offer unprecedented opportunity for X-ray and visible light detection. Nevertheless, it remains a challenge to keep simultaneous high-performance and stability at a high-temperature working mode. Herein, formamidinium lead bromide (FAPbBr) SCs are developed to successfully address these issues.
View Article and Find Full Text PDFTin(Sn)-based perovskite is currently considered one of the most promising materials due to extending the absorption spectrum and reducing the use of lead (Pb). However, Sn is easily oxidized to Sn in atmosphere, causing more defects and degradation of perovskite materials. Herein, double-sided interface engineering is proposed, that is, Sn-Pb perovskite films are sandwiched between the phenethylammonium iodide (PEAI) in both the bottom and top sides.
View Article and Find Full Text PDF