Publications by authors named "Jizhi Ge"

Injury to one cerebral hemisphere can result in paresis of the contralesional hand and subsequent preference of the ipsilesional hand in daily activities. However, forced use therapy in humans can improve function of the contralesional paretic hand and increase its use in daily activities, although the ipsilesional hand may remain preferred for fine motor activities. Studies in monkeys have shown that minimal forced use of the contralesional hand, which was the preferred hand prior to brain injury, can produce remarkable recovery of function.

View Article and Find Full Text PDF

High-resolution anterograde tracers and stereology were used to study the terminal organization of the corticospinal projection (CSP) from the rostral portion of the primary motor cortex (M1r) to spinal levels C5-T1. Most of this projection (90%) terminated contralaterally within laminae V-IX, with the densest distribution in lamina VII. Moderate bouton numbers occurred in laminae VI, VIII, and IX with few in lamina V.

View Article and Find Full Text PDF

H3 K27-altered diffuse midline gliomas (DMGs) are frequently biopsied to obtain tissue diagnosis, inform clinical decision-making, and determine clinical trial eligibility. Tissue yield from biopsies is typically low, leaving little material available for research. To advance understanding of disease biology and promote preclinical testing of novel therapeutics, collecting viable cellular material from treatment-naive tumors is of paramount importance.

View Article and Find Full Text PDF

Background: H3K27-altered diffuse midline glioma (DMG) is the deadliest pediatric brain tumor; despite intensive research efforts, every clinical trial to date has failed. Is this because we are choosing the wrong drugs? Or are drug delivery and other pharmacokinetic variables at play? We hypothesize that the answer is likely a combination, where optimization may result in a much needed novel therapeutic approach.

Methods: We used in vitro drug screening, patient samples, and shRNA knockdown models to identify an upregulated target in DMG.

View Article and Find Full Text PDF

Background: H3K27M-mutant diffuse midline glioma (DMG) is a lethal brain tumor that usually occurs in children. Despite advances in our understanding of its underlying biology, efficacious therapies are severely lacking.

Methods: We screened a library of drugs either FDA-approved or in clinical trial using a library of patient-derived H3K27M-mutant DMG cell lines with cell viability as the outcome.

View Article and Find Full Text PDF

Objective: In some cases of incomplete cervical spinal cord injury (iSCI) there is marked paresis and dysfunction of upper-extremity movement but not lower-extremity movement. A continued explanation of such symptoms is a somatotopic organization of corticospinal tract (CST) fibers passing through the decussation at the craniovertebral junction (CVJ) and lateral CST (LCST). In central cord syndrome, it has been suggested that injury to the core of the cervical cord may include selective damage to medially located arm/hand LCST fibers, without compromising laterally located leg fibers.

View Article and Find Full Text PDF

We previously reported that rhesus monkeys recover spontaneous use of the more impaired (contralesional) hand following neurosurgical lesions to the arm/hand representations of primary motor cortex (M1) and lateral premotor cortex (LPMC) (F2 lesion) when tested for reduced use (RU) in a fine motor task allowing use of either hand. Recovery occurred without constraint of the less impaired hand and with occasional forced use of the more impaired hand, which was the preferred hand for use in fine motor tasks before the lesion. Here, we compared recovery of five F2 lesion cases in the same RU test to recovery after unilateral lesions of M1, LPMC, S1 and anterior portion of parietal cortex (F2P2 lesion - four cases).

View Article and Find Full Text PDF

We tested the hypothesis that injury to frontoparietal sensorimotor areas causes greater initial impairments in performance and poorer recovery of ipsilesional dexterous hand/finger movements than lesions limited to frontal motor areas in rhesus monkeys. Reaching and grasping/manipulation of small targets with the ipsilesional hand were assessed for 6-12 months post-injury using two motor tests. Initial post-lesion motor skill and long-term recovery of motor skill were compared in two groups of monkeys: (1) F2 group-five cases with lesions of arm areas of primary motor cortex (M1) and lateral premotor cortex (LPMC) and (2) F2P2 group-five cases with F2 lesions + lesions of arm areas of primary somatosensory cortex and the anterior portion of area 5.

View Article and Find Full Text PDF

High-resolution tract tracing and stereology were used to study the terminal organization of the corticospinal projection (CSP) from the ventral (v) and dorsal (d) regions of the lateral premotor cortex (LPMC) to spinal levels C5-T1. The LPMCv CSP originated from the postarcuate sulcus region, was bilateral, sparse, and primarily targeted the dorsolateral and ventromedial sectors of contralateral lamina VII. The convexity/lateral part of LPMCv did not project below C2.

View Article and Find Full Text PDF

The ipsilateral corticopontine projection (iCPP) represents a massive descending axon system terminating in the pontine nuclei (PN). In the primate, this projection is well known for its dominant influence on contralateral upper limb movements through the classical cerebrocerebellar circuity system. Although a much weaker contralateral corticopontine projection (cCPP) from motor cortex to the paramedian region has been reported in the non-human primate brain, we provide the first comprehensive description of the cCPP from the lateral motor cortex using high resolution anterograde tract tracing in .

View Article and Find Full Text PDF

We tested the hypothesis that arm/hand motor recovery after injury of the lateral sensorimotor cortex is associated with upregulation of the corticoreticular projection (CRP) from the supplementary motor cortex (M2) to the gigantocellular reticular nucleus of the medulla (Gi). Three groups of rhesus monkeys of both genders were studied: five controls, four cases with lesions of the arm/hand area of the primary motor cortex (M1) and the lateral premotor cortex (LPMC; F2 lesion group), and five cases with lesions of the arm/hand area of M1, LPMC, S1, and anterior parietal cortex (F2P2 lesion group). CRP strength was assessed using high-resolution anterograde tracers injected into the arm/hand area of M2 and stereology to estimate of the number of synaptic boutons in the Gi.

View Article and Find Full Text PDF

The effects of primary somatosensory cortex (S1) injury on recovery of contralateral upper limb reaching and grasping were studied by comparing the consequences of isolated lesions to the arm/hand region of primary motor cortex (M1) and lateral premotor cortex (LPMC) to lesions of these same areas plus anterior parietal cortex (S1 and rostral area PE). We used multiple linear regression to assess the effects of gray and white matter lesion volumes on deficits in reaching and fine motor performance during the first month after the lesion, and during recovery of function over 3, 6 and 12months post-injury in 13 monkeys. Subjects with frontoparietal lesions exhibited larger deficits and poorer recovery as predicted, including one subject with extensive peri-Rolandic injury developing learned nonuse after showing signs of recovery.

View Article and Find Full Text PDF

We investigated recovery of precision grasping of small objects between the index finger and thumb of the impaired hand without forced use after surgically placed lesions to the hand/arm areas of M1 and M1 + lateral premotor cortex in two monkeys. The unilateral lesions were contralateral to the monkey's preferred hand, which was established in prelesion testing as the hand used most often to acquire raisins in a foraging board (FB) task in which the monkey was free to use either hand to acquire treats. The lesions initially produced a clear paresis of the contralesional hand and use of only the ipsilesional hand to acquire raisins in the FB task.

View Article and Find Full Text PDF

The corticobulbar projection to the hypoglossal nucleus was studied from the frontal, parietal, cingulate, and insular cortices in the rhesus monkey by using high-resolution anterograde tracers and stereology. The hypoglossal nucleus received bilateral input from the face/head region of the primary (M1), ventrolateral pre- (LPMCv), supplementary (M2), rostral cingulate (M3), and caudal cingulate (M4) motor cortices. Additional bilateral corticohypoglossal projections were found from the dorsolateral premotor cortex (LPMCd), ventrolateral proisocortical motor area (ProM), ventrolateral primary somatosensory cortex (S1), rostral insula, and pregenual region of the anterior cingulate gyrus (areas 24/32).

View Article and Find Full Text PDF

To further our understanding of the corticospinal projection (CSP) from the hand/arm representation of the primary motor cortex (M1), high-resolution anterograde tracing methodology and stereology were used to investigate the terminal distribution of this connection at spinal levels C5 to T1. The highest number of labeled terminal boutons occurred contralaterally (98%) with few ipsilaterally (2%). Contralaterally, labeled boutons were located within laminae I-X, with the densest distribution found in lamina VII and, to a lesser extent, laminae IX and VI.

View Article and Find Full Text PDF

The purpose of this study was to test whether brain laterality influences spontaneous recovery of hand motor function after controlled brain injuries to arm areas of M1 and lateral premotor cortex (LPMC) of the hemisphere contralateral to the preferred hand in rhesus monkeys. We hypothesized that monkeys with stronger hand preference would exhibit poorer recovery of skilled hand use after such brain injury. Degree of handedness was assessed using a standard dexterity board task in which subjects could use either hand to retrieve small food pellets.

View Article and Find Full Text PDF

Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb.

View Article and Find Full Text PDF

The purpose of this study was to determine if recovery of neurologically impaired hand function following isolated motor cortex injury would occur without constraint of the non-impaired limb, and without daily forced use of the impaired limb. Nine monkeys (Macaca mulatta) received neurosurgical lesions of various extents to arm representations of motor cortex in the hemisphere contralateral to the preferred hand. After the lesion, no physical constraints were placed on the ipsilesional arm/hand and motor testing was carried out weekly with a maximum of 40 attempts in two fine motor tasks that required use of the contralesional hand for successful food acquisition.

View Article and Find Full Text PDF

Brain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Because the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2).

View Article and Find Full Text PDF

Due to the heterogeneous nature of most brain injuries, the contributions of gray and white matter involvement to motor deficits and recovery potential remain obscure. We tested the hypothesis that duration of hand motor impairment and recovery of skilled arm and hand motor function depends on the volume of gray and white matter damage of the frontal lobe. Lesions of the primary motor cortex (M1), M1 + lateral premotor cortex (LPMC), M1 + LPMC + supplementary motor cortex (M2) or multifocal lesions affecting motor areas and medial prefrontal cortex were evaluated in rhesus monkeys.

View Article and Find Full Text PDF

Motor deficit severity and the potential for recovery in patients with brain injury depend on the integrity of descending corticofugal projections. Clinical assessment of these conditions following subtotal brain trauma requires a comprehensive understanding of the anatomical structures involved in the lesion as well as those structures that are spared. To assist in this endeavor, we investigated motor fiber organization in the crus cerebri of the cerebral peduncle (ccCP) in the rhesus monkey.

View Article and Find Full Text PDF

A modified "Klüver" or dexterity board was developed to assess fine control of hand and digit movements by nonhuman primates during the acquisition of small food pellets from wells of different diameter. The primary advantages of the new device over those used previously include standardized positioning of target food pellets and controlled testing of each hand without the need for restraints, thereby allowing the monkey to move freely about the cage. Three-dimensional video analysis of hand motion was used to provide measures of reaching accuracy and grip aperture, as well as temporal measures of reach duration and food-pellet manipulation.

View Article and Find Full Text PDF

Amygdala interconnections with the cingulate motor cortices were investigated in the rhesus monkey. Using multiple tracing approaches, we found a robust projection from the lateral basal nucleus of the amygdala to Layers II, IIIa, and V of the rostral cingulate motor cortex (M3). A smaller source of amygdala input arose from the accessory basal, cortical, and lateral nuclei, which targeted only the rostral region of M3.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionluiga21sh2on1npklt78sft2tkiee7sr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once