Publications by authors named "Jizhe Yu"

Background: The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA.

Methods: The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

This study examined the osteogenic effect of electromagnetic fields (EMF) under the simulated in vivo conditions. Rat bone marrow mesenchymal stem cells (BMSCs) and rat osteoblasts were co-cultured and exposed to 50 Hz, 1.0 mT EMF for different terms.

View Article and Find Full Text PDF

Electromagnetic fields (EMFs) are used clinically to promote fracture healing and slow down osteoporosis without knowledge of optimal parameters and underlying principles. In the present study, we investigate the effects of irritation for different durations with 15 Hz 1 mT sinusoidal EMFs (SEMFs) on rat bone marrow mesenchymal stem cells (BMSCs) proliferation, differentiation, and mineralization potentials. Our results show that SEMFs irritation promote rat BMSCs proliferation in a time-dependent manner, and the expression of osteogenic gen [Cbfa 1/RUNX2, bone sialoprotein (BSP), osteopontin (OPN)], alkaline phosphatase activity, and calcium deposition were enhanced after SEMFs treatment depending on the time duration of treatment.

View Article and Find Full Text PDF

Electromagnetic field (EMF) stimulation is clinically beneficial for fracture nonunion and a wide range of bone disorders. However, no consensus has been reached on the optimal parameters of the EMF. The exact mechanism by which EMFs enhance osteogenesis has also not been defined.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are promising for use in regenerative medicine. Low-level light irradiation (LLLI) has been shown to modulate various processes in different biological systems. The aim of our study was to investigate the effect of red light emitted from a light-emitting diode (LED) on bone marrow MSCs with or without osteogenic supplements.

View Article and Find Full Text PDF

Pharmacological inhibition of DNA repair pathways has been emerging as an effective tool for cancer treatment. Poly(ADP-ribose) polymerase (PARP) is involved in DNA repair and transcriptional regulation and is now recognized as a key regulator of cell survival and cell death. In vitro and in vivo data suggest that PARP inhibitors could be used not only as chemo/radiotherapy sensitizers but also as single agents to selectively kill cancer cells in certain types of tumors.

View Article and Find Full Text PDF