Front Cell Neurosci
October 2024
Spinal cord injury (SCI) is a serious neurological injury that causes severe trauma to motor and sensory functions. Although long considered incurable, recent research has brought new hope for functional recovery from SCI. After SCI, astrocytes are activated into many polarization states.
View Article and Find Full Text PDFThe M1 polarization of microglia, followed by the production of pro-inflammatory mediators, hinders functional recovery after spinal cord injury (SCI). Our previous study has illuminated that specificity protein 1 (Sp1) expression is increased following SCI, whereas the function and regulatory mechanism of Sp1 during M1 polarization of microglia following SCI remain unknown. RNA binding protein, HuR, has been shown to be up-regulated in the injured spinal cord through analysis of the GEO database.
View Article and Find Full Text PDFFollowing spinal cord injury (SCI), astrocyte activation and proliferation result in the development of glial scars, which impede axonal growth and neurological recovery. Dysregulation of microRNAs (miRNAs) during SCI results in altered expression of downstream genes. Our previous study has revealed that miR-135a-5p regulates neuronal apoptosis and axonal growth by targeting specificity protein 1 (SP1).
View Article and Find Full Text PDF