Publications by authors named "Jiyong Liang"

Glioblastoma (GBM) tumor microenvironment (TME) is a highly heterogeneous and complex system, which in addition to cancer cells, consists of various resident brain and immune cells as well as cells in transit through the tumor such as marrow-derived immune cells. The TME is a dynamic environment which is heavily influenced by alterations in cellular composition, cell-to-cell contact and cellular metabolic products as well as other chemical factors, such as pH and oxygen levels. Emerging evidence suggests that GBM cells appear to reprogram their the TME, and hijack microenvironmental elements to facilitate rapid proliferation, invasion, migration, and survival thus generating treatment resistance.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR) T cells have recently been demonstrated to extract and express cognate tumor antigens through trogocytosis. This process may contribute to tumor antigen escape, T cell exhaustion, and fratricide, which plays a central role in CAR dysfunction. We sought to evaluate the importance of this effect in epidermal growth factor receptor variant III (EGFRvIII) specific CAR T cells targeting glioma.

View Article and Find Full Text PDF

Deficiency in T cell-mediated adaptive immunity, such as low CD8 T cell infiltration, inhibits the immune surveillance, promotes malignant transformation, and facilitates tumor growth. Microbiota dysbiosis diminishes the immune system and contributes to the occurrence of cancer. However, the impact of oral dysbiosis on the occurrence and molecular mechanisms of oropharyngeal cancer (OPC) remains largely unknown.

View Article and Find Full Text PDF

Abdominal irradiation (IR) may destroy the intestinal mucosal barrier, leading to severe intestinal infection and multiple organ dysfunction syndromes. The role of intestinal microbiota in the development of IR-induced intestinal injury remains largely unknown. Herein, we reported that abdominal IR altered the composition of the microbiota and reduced the abundance and diversity of the gut microbiome.

View Article and Find Full Text PDF

Aims: Liver kinase B1 (LKB1) deficiency is associated with reduced expression of programmed death ligand 1 (PD-L1) and inferior clinical outcomes of PD-1/PD-L1 blockade in non-small cell lung cancer (NSCLC). This study aimed to investigate the mechanism by which LKB1 regulates PD-L1 expression and its role in programmed death 1 (PD-1) blockade therapy in NSCLC.

Main Methods: The impact of LKB1 on PD-L1 was assessed by western blot, qRT-PCR and immunohistochemistry in NSCLC.

View Article and Find Full Text PDF

Programmed cell death 1 ligand 1 (PD-L1) is a key driver of tumor-mediated immune suppression, and targeting it with antibodies can induce therapeutic responses. Given the costs and associated toxicity of PD-L1 blockade, alternative therapeutic strategies are needed. Using reverse-phase protein arrays to assess drugs in use or likely to enter trials, we performed a candidate drug screen for inhibitors of PD-L1 expression and identified verteporfin as a possible small-molecule inhibitor.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of O-Linked β-N-acetylglucosamine (O-GlcNAc) in the development of Crohn's disease (CD) and explores potential therapeutic effects of O-GlcNAc inhibitors.
  • Findings show that O-GlcNAc levels are elevated in CD patients and are linked to the infection by adherent-invasive E. coli, which activates NF-κB, a key player in inflammation.
  • Targeting O-GlcNAc may provide a new therapeutic approach for managing inflammatory bowel disease by enhancing autophagy and reducing intestinal inflammation.
View Article and Find Full Text PDF

Background: Non-viral manufacturing of CAR T cells via the Sleeping Beauty transposon is cost effective and reduces the risk of insertional mutagenesis from viral transduction. However, the current gold standard methodology requires ex vivo numerical expansion of these cells on artificial antigen-presenting cells (AaPCs) for 4 weeks to generate CAR T cells of presumed sufficient quantity and function for clinical applications.

Method: We engineered EGFRvIII-specific CAR T cells and monitored phenotypic changes throughout their ex vivo manufacturing.

View Article and Find Full Text PDF

We demonstrate that concurrent administration of poly(ADP-ribose) polymerase (PARP) and WEE1 inhibitors is effective in inhibiting tumor growth but poorly tolerated. Concurrent treatment with PARP and WEE1 inhibitors induces replication stress, DNA damage, and abrogates the G DNA damage checkpoint in both normal and malignant cells. Following cessation of monotherapy with PARP or WEE1 inhibitors, effects of these inhibitors persist suggesting that sequential administration of PARP and WEE1 inhibitors could maintain efficacy while ameliorating toxicity.

View Article and Find Full Text PDF

Distant metastasis is the major contributor to treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). The lack of effective treatment strategies for metastatic NPC is the major cause for the low survival rate. Therefore, it is crucial to understand the molecular mechanisms underlying NPC metastasis and to identify potential biomarkers for targeted therapy.

View Article and Find Full Text PDF

Background: Aberrant AKT activation is prevalent across human cancer lineages, providing an important therapeutic target. AKT comprises three isoforms that mediate critical non-redundant, even opposing functions in cancer pathophysiology. Therefore, targeting specific AKT isoforms in particular cancers may be more effective than pan-AKT inhibition while avoiding disadvantages of pan-AKT inhibition.

View Article and Find Full Text PDF

ARID1A (the AT-rich interaction domain 1A, also known as BAF250a) is one of the most commonly mutated genes in cancer. The majority of ARID1A mutations are inactivating mutations and lead to loss of ARID1A expression , which makes ARID1A a poor therapeutic target. Therefore, it is of clinical importance to identify molecular consequences of ARID1A deficiency that create therapeutic vulnerabilities in ARID1A-mutant tumors.

View Article and Find Full Text PDF

Background: The AMP-activated protein kinase (AMPK) plays critical roles in growth regulation and metabolism reprogramming. AMPK activation protects cells against apoptosis from injury in different cell and animal models. However, its function in necroptosis remains largely unclear.

View Article and Find Full Text PDF

The compact structure of a chlorine-doped continuous CNT sheet/polyvinylidene fluoride (Cl-CNT sheet/PVDF) was successfully optimized by means of a hot-press treatment to improve the mechanical and dielectric properties with a high densification degree. Then, the densified Cl-CNT sheet/PVDF dielectric layer was inserted between two PVDF insulating layers to fabricate a sandwich composite. It was found that the dielectric and mechanical properties were effectively enhanced, with a dielectric permittivity of 40.

View Article and Find Full Text PDF

Liver kinase B1 (LKB1) functions as a tumor suppressor encoded by STK11, a gene that mutated in Peutz-Jeghers syndrome and in sporadic cancers. Previous studies showed that LKB1 participates in IR- and ROS-induced DNA damage response (DDR). However, the impact of LKB1 mutations on targeted cancer therapy remains unknown.

View Article and Find Full Text PDF

Angiogenesis is required for the growth and metastasis of solid tumors. The anti-malarial agent dihydroartemisinin (DHA) demonstrates potent anti-angiogenic activity, but the underlying molecular mechanisms are not yet fully understood. During the process of angiogenesis, endothelial cells migrating from existing capillaries may undergo programmed cell death after detaching from the extracellular matrix, a process that is defined as anchorage-dependent apoptosis or anoikis.

View Article and Find Full Text PDF

High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered.

View Article and Find Full Text PDF

Insulin resistance (IR) is an important mechanism of pathogenesis of endometrial cancer (EC) and explains the pathogenic mechanism of high risk factors including Obesity BMI (body mass index), Type 2 Diabetes Mellitus, PCOS and so on. Relieving IR or inhibiting the function of insulin could be one of the potential therapeutic strategies for EC, which is a PI3K-driven disease. PI3K/Akt are the central mediators for insulin/IGF1 signaling, however, the involvement of HIPPO pathway co-activators, YAP and TAZ, in insulin resistance remains to be elucidated.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) plays a central role in cellular energy sensing and bioenergetics. However, the role of AMPK in surveillance of mitochondrial damage and induction of mitophagy remains unclear. We demonstrate herein that AMPK is required for efficient mitophagy.

View Article and Find Full Text PDF

The phosphatidylinositol 3 kinase (PI3K)/AKT pathway is genetically targeted in more pathway components and in more tumor types than any other growth factor signaling pathway, and thus is frequently activated as a cancer driver. More importantly, the PI3K/AKT pathway is composed of multiple bifurcating and converging kinase cascades, providing many potential targets for cancer therapy. Renal cell carcinoma (RCC) is a high-risk and high-mortality cancer that is notoriously resistant to traditional chemotherapies or radiotherapies.

View Article and Find Full Text PDF

Many mutant p53 proteins (mutp53s) exert oncogenic gain-of-function (GOF) properties, but the mechanisms mediating these functions remain poorly defined. We show here that GOF mutp53s inhibit AMP-activated protein kinase (AMPK) signaling in head and neck cancer cells. Conversely, downregulation of GOF mutp53s enhances AMPK activation under energy stress, decreasing the activity of the anabolic factors acetyl-CoA carboxylase and ribosomal protein S6 and inhibiting aerobic glycolytic potential and invasive cell growth.

View Article and Find Full Text PDF

Background & Aims: Variants in genes that regulate autophagy have been associated with Crohn's disease (CD). Defects in autophagy-mediated removal of pathogenic microbes could contribute to the pathogenesis of CD. We investigated the role of the microRNAs (miRs) MIR106B and MIR93 in induction of autophagy and bacterial clearance in human cell lines and the correlation between MIR106B and autophagy-related gene 16L1 (ATG16L1) expression in tissues from patients with CD.

View Article and Find Full Text PDF

The AMP-activated protein kinase (AMPK) functions to monitor and maintain energy homeostasis at the cellular and organism level. AMPK was perceived historically primarily as a component of the LKB1/STK11 tumor suppressor (LKB1 mutations cause the Peutz-Jegher cancer predisposition syndrome) cascade upstream of the TSC1/2/mTOR pathway and thus likely to be a tumor suppressor. However, AMPK has recently been shown to promote cancer cell survival in the face of extrinsic and intrinsic stressors including bioenergetic, growth factor, and oncogene stress compatible with studies showing that AMPK is required for oncogenic transformation.

View Article and Find Full Text PDF

Unlabelled: Metabolic changes are common features of many cancer cells and are frequently associated with the clinical outcome of patients with various cancers, including hepatocellular carcinoma (HCC). Thus, aberrant metabolic pathways in cancer cells are attractive targets for cancer therapy. However, our understanding of cancer-specific regulatory mechanisms of cell metabolism is still very limited.

View Article and Find Full Text PDF