Publications by authors named "Jiyong Fang"

This study successfully utilized a straightforward approach, choosing liquid-liquid phase separation to build a porous structure and synthesize composite absorbers based on polyimide-based porous carbon/FeC (PIC/FeC-1, PIC/FeC-2) nanoparticles and porous carbon/FeCo alloy nanoparticles (PIC/FeCo). The specially designed network structure pore structures contributed multiple reflection, conduction loss and strong interfacial polarization. After characterization, PIC/FeC-2 obtained minimum RL of -35.

View Article and Find Full Text PDF

This study successfully utilized a straightforward approach, choosing liquid-liquid phase separation to build a porous structure and synthesize composite absorbers based on polyimide-based porous carbon and cobalt nanoparticles (designated as PPC/Co-700 and PPC/Co-800). A fine porous structure was achieved as a result of the excellent heat resistance of polyimide resulting in an excellent electromagnetic wave absorption ability of PPC/Co composites. The results obtained clearly indicated that PPC/Co-700 and PPC/Co-800 exhibit a porous structure with coral-like pores, enhancing both impedance matching properties and microwave attenuation abilities.

View Article and Find Full Text PDF

High-performance polyimide-based porous carbon/crystalline composite absorbers (PIC/rGO and PIC/CNT) were prepared by vacuum freeze-drying and high-temperature pyrolysis. The excellent heat resistance of polyimides (PIs) ensured the integrity of their pore structure during high-temperature pyrolysis. The complete porous structure improves the interfacial polarization and impedance-matching conditions.

View Article and Find Full Text PDF

Both morphological structure and chemical composition are the important factors that determine the electromagnetic wave (EMW) absorption properties of EMW absorbers. Herein, hierarchical porous carbon (HPPC) was synthesized by using polyetheretherketone (PEEK) as the starting material the salt template method combined with KOH activation. Then, taking advantage of the hierarchical porous characteristics of the carbon, a novel EMW absorber (HPPC/CoNi) was synthesized by growth of CoNi bimetallic alloys inside the above porous carbon.

View Article and Find Full Text PDF

A simple method that combines liquid-liquid phase separation and high-temperature pyrolysis has been developed for the synthesis of polyimide-derived porous carbon/Co particle-based composite absorbers (PIC/Co-800 and PIC/Co-1000). The excellent heat resistance of polyimide allows the composite precursor to maintain its porous structure during pyrolysis. According to the results, PIC/Co-800 and PIC/Co-1000 have a coral-like porous structure, which can enhance the impedance matching property and microwave attenuation ability of the synthesized materials.

View Article and Find Full Text PDF

A rapid and sensitive approach for enriching and extracting triazines from brown sugar samples was developed by combining magnetic dispersive solid-phase extraction and HPLC/UV. In this work, a magnetic porous biochar (MPB) derived from low-cost bagasse was prepared and successfully employed as an adsorbent. A particular emphasis was placed on optimizing the extraction conditions, including the amount of MPB, extraction time, pH, type and volume of eluent, and salt concentration.

View Article and Find Full Text PDF

Objective: To investigate the methylation status of CHD5 gene promoter in bone marrow from acute myeloid leukemia (AML) patients, and the underlying mechanism for initiating the pathogenesis of AML via p19/p53/p21 pathway.

Methods: Methylation status of the CHD5 gene promoter was detected by using methylation-specific polymerase chain reaction (MSPCR) in bone marrow from AML patients, and the iron-deficiency anemia (IDA) samples were served as control. The expression of CHD5, p19, p53 and p21 was determined by real-time quantitative reverse transcriptase PCR and Western blot.

View Article and Find Full Text PDF

A method combining liquid-liquid phase separation and the pyrolysis process has been developed to fabricate the wormhole-like porous carbon/magnetic nanoparticles composite with a pore size of about 80 nm (WPC/MNPs-80). In this work, the porous structure was designed to enhance interaction between the electromagnetic (EM) wave and the absorber, while the magnetic nanoparticles were used to bring about magnetic loss ability. The structure, morphology, porosity and magnetic properties of WPC/MNPs-80 were investigated in detail.

View Article and Find Full Text PDF

A novel transparent Co0.2Fe2.8O4@SiO2-polyetheretherketone hybrid material is prepared for electromagnetic interference shielding via in situ sol-gel process.

View Article and Find Full Text PDF