Intravitreal injection (IVI) is a common technology which is used to treat ophthalmic diseases inside eyeballs by delivering various drugs into the vitreous cavity using hypodermic needles. However, in some cases, there are possible side effects such as ocular tissue damage due to repeated injection or eyeball infection through the hole created during the needle retraction process. The best scenario of IVI is a one-time injection of drugs without needle retraction, keeping the system of the eyeball closed.
View Article and Find Full Text PDFBackground: Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
The future of safe cell-based therapy rests on overcoming teratoma/tumor formation, in particular when using human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation, complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile, we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.
View Article and Find Full Text PDF