Publications by authors named "Jixi Lu"

An optical pumping scheme is proposed for reducing the gradient of electron spin polarization and suppressing light source noise in a spin-exchange relaxation-free magnetometer. This is achieved by modulating only the phase of a narrow-linewidth pump light field with external Gaussian noise. Compared to the absence of phase modulation, the uniformity of electron spin polarization was improved by over 40%, and the light-frequency noise suppression ratio of the magnetometer was enhanced by 4.

View Article and Find Full Text PDF

The existence of an approximately uniform and unsaturated electron spin polarization distribution within a high-density alkali-metal vapor is considered of great importance for significantly improving the response amplitude and sensitivity properties of an atomic magnetometer. However, when a high-density alkali-metal vapor is formed, the optical depth is much larger than the value of one, resulting in the electron spin polarization gradient. In this work, it was demonstrated from both numerical simulations and experimental points of view, that by replacing the resonant pumping light with two off-resonant pumping light sources, the signal amplitude of the magnetometer can be doubled.

View Article and Find Full Text PDF

The magnetic noise generated by the ferrite magnetic shield affects the performance of ultra-sensitive atomic sensors. Differential measurement can effectively suppress the influence of common-mode (CM) magnetic noise, but the limit of suppression capability is not clear at present. In this paper, a finite element analysis model using power loss to calculate differential-mode (DM) magnetic noise under a ferrite magnetic shield is proposed.

View Article and Find Full Text PDF

Triaxial magnetic field compensation is crucial for a zero-field optically pumped magnetometer (OPM) in pursuit of a zero-field environment. In this work, we demonstrate a triaxial magnetic field compensation method for zero-field OPM based on single-beam configuration. It consists of two procedures: (1) pre-compensation to preliminarily cancel out ambient residual magnetic field by low-frequency magnetic field modulation; and (2) precise compensation to further compensate the residual magnetic field by high-frequency magnetic field modulation.

View Article and Find Full Text PDF

We propose a three-axis closed-loop optically pumped magnetometer with high sensitivity. The closed-loop magnetometer has a three-axis sensitivity of approximately 30 fT/Hz using two orthogonal laser beams for pumping and probing the alkali metal atoms. In the closed-loop mode, the dynamic range is improved from ±5 nT to ±150 nT.

View Article and Find Full Text PDF

The magnitude of the electron spin-relaxation rate R of the atomic ensemble directly affects the sensitivity of the spin-exchange relaxation-free (SERF) atomic magnetometer (AM). The rapid and in-situ characterization of R is of great importance. In this work, a fast extraction method of R is proposed with a measurement period shorten to 0.

View Article and Find Full Text PDF

The emerging multi-channel spin-exchange relaxation-free (SERF) atomic magnetometer is a promising candidate for non-intrusive biomagnetism imaging. In this study, we propose a scanning 9-channel SERF magnetometer based on an acousto-optic modulator (AOM). Using the diffraction light of the AOM as the probe laser (with a low laser power of 1.

View Article and Find Full Text PDF
Article Synopsis
  • Atomic magnetometers (AMs) are highly sensitive tools for measuring bio-magnetic fields, with new interest in making smaller, cheaper versions using nanophotonics and CMOS technology.
  • A new integrated polarization-splitting grating coupler has been developed to efficiently couple light at rubidium's D1 transition wavelength (795 nm) while splitting the polarization.
  • This device enables better detection of ultra-weak magnetic fields in compact formats, supporting the future creation of advanced chip-scale AMs for high-resolution bio-magnetic imaging.
View Article and Find Full Text PDF

We analyze and suppress the magnetic noise response in optical rotation detection system (ORDS) in atomic magnetometers in this study. Because of the imperfections of the optical elements, the probe light is actually elliptically polarized in ORDS, which can polarize the atom ensemble and cause the responses to the three-axis magnetic noise. We theoretically analyze the frequency responses to the magnetic noise, and prove that the responses are closely associated with the DC magnetic field.

View Article and Find Full Text PDF

In the spin-exchange relaxation-free (SERF) magnetometer, the probe noise is a consequential factor affecting the gradiometric measurement sensitivities. In this paper, we proposed a new characteristics model of the probe noise based on noise separation. Different from noise analysis on single noise source, we considered most of the noise sources influencing the probe system and realized noise sources level measurement experimentally.

View Article and Find Full Text PDF

Electrical heating elements, which are widely used to heat the vapor cell of ultrasensitive atomic magnetometers, inevitably produce a magnetic field interference. In this paper, we propose a novel measurement method of the amplitude of electrical-heating-induced magnetic field for an atomic magnetometer. In contrast to conventional methods, this method can be implemented in the atomic magnetometer itself without the need for extra magnetometers.

View Article and Find Full Text PDF

This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle.

View Article and Find Full Text PDF

High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters.

View Article and Find Full Text PDF

We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution.

View Article and Find Full Text PDF