This study introduces a cellulose nanofiber surfactant system, in which the surface is hydrophobically modified with different alkyl chain structures for the effective envelopment of solid lipid microparticles (SLMs). To endow bacterial cellulose nanofibers (BCNFs) with excellent ability to assemble at the lipid-water interface, alkyl chains with designated molecular structures, such as decane, didecane, and eicosane, are covalently grafted onto the BCNF surface. Interfacial tension and interfacial rheology measurements indicate that dialkyl chain-grafted BCNFs (diC BCNF) exhibit strong interfibrillar association at the interface.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant neurodegenerative disorder of the central nervous system (CNS) that is defined by a CAG expansion in exon 1 of the huntingtin gene leading to the production of mutant huntingtin (mHtt). To date, the disease pathophysiology has been thought to be primarily driven by cell-autonomous mechanisms, but, here, we demonstrate that fibroblasts derived from HD patients carrying either 72, 143 and 180 CAG repeats as well as induced pluripotent stem cells (iPSCs) also characterized by 143 CAG repeats can transmit protein aggregates to genetically unrelated and healthy host tissue following implantation into the cerebral ventricles of neonatal mice in a non-cell-autonomous fashion. Transmitted mHtt aggregates gave rise to both motor and cognitive impairments, loss of striatal medium spiny neurons, increased inflammation and gliosis in associated brain regions, thereby recapitulating the behavioural and pathological phenotypes which characterizes HD.
View Article and Find Full Text PDFMicrofluidics forms the basis of unique experimental approaches that visualize the development of neural structure using micro-scale devices and aids the guidance of neurite growth in an axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stems cells (hESC). We cocultured hESC with PA6 stromal cells and isolated neural rosette-like structures, which subsequently formed neurospheres in a suspension culture.
View Article and Find Full Text PDF