Publications by authors named "Jiwon Yeon"

Group-level analyses have typically associated behavioral signatures with a constrained set of brain areas. Here we show that two behavioral metrics - reaction time (RT) and confidence - can be decoded across the cortex when each individual is considered separately. Subjects (N=50) completed a perceptual decision-making task with confidence.

View Article and Find Full Text PDF

One of the most important human faculties is the ability to acquire not just new memories but the capacity to perform entirely new tasks. However, little is known about the brain mechanisms underlying the learning of novel tasks. Specifically, it is unclear to what extent learning of different tasks depends on domain-general and/or domain-specific brain mechanisms.

View Article and Find Full Text PDF

The emergence of multi-drug resistant raises a serious threat to global public health. is a gram-positive intestinal commensal bacterium found in humans. can endure extreme environments such as high temperature, pressure, and high salt, which facilitates them to cause infection in hospitals.

View Article and Find Full Text PDF

Research in neuroscience often assumes universal neural mechanisms, but increasing evidence points toward sizeable individual differences in brain activations. What remains unclear is the extent of the idiosyncrasy and whether different types of analyses are associated with different levels of idiosyncrasy. Here we develop a new method for addressing these questions.

View Article and Find Full Text PDF

Meaningful variation in internal states that impacts cognition and behavior remains challenging to discover and characterize. Here we leveraged trial-to-trial fluctuations in the brain-wide signal recorded using functional MRI to test if distinct sets of brain regions are activated on different trials when accomplishing the same task. Across three different perceptual decision-making experiments, we estimated the brain activations for each trial.

View Article and Find Full Text PDF

Enterococcus faecalis has recently shown signs of high antibiotic resistance. These bacteria can endure extremes of temperature and this may be due to the high thermostability of its proteins. E.

View Article and Find Full Text PDF

SignificanceSimilar to mammalian TLR4/MD-2, the Toll9/MD-2-like protein complex in the silkworm, acts as an innate pattern-recognition receptor that recognizes lipopolysaccharide (LPS) and induces LPS-stimulated expression of antimicrobial peptides such as cecropins. Here, we report that papiliocin, a cecropin-like insect antimicrobial peptide from the swallowtail butterfly, competitively inhibits the LPS-TLR4/MD-2 interaction by directly binding to human TLR4/MD-2. Structural elements in papiliocin, which are important in inhibiting TLR4 signaling via direct binding, are highly conserved among insect cecropins, indicating that its TLR4-antagonistic activity may be related to insect Toll9-mediated immune response against microbial infection.

View Article and Find Full Text PDF

While tactile sensation plays an essential role in interactions with the surroundings, relatively little is known about the neural processes involved in the perception of tactile information. In particular, it remains unclear how different intensities of tactile hardness are represented in the human brain during object manipulation. This study aims to investigate neural responses to various levels of tactile hardness using functional magnetic resonance imaging while people grasp objects to perceive hardness intensity.

View Article and Find Full Text PDF

Aryl polyenes (APE) are one of the most widespread secondary metabolites among gram-negative bacteria. In Acinetobacter baumannii, strains belonging to the virulent global clone 2 (GC2) mostly contain APE biosynthesis genes; its relevance in elevated pathogenicity is of great interest. APE biosynthesis gene clusters harbor two ketosynthases (KSs): the heterodimeric KS-chain length factor complex, ApeO-ApeC, and the homodimeric ketoacyl-acyl carrier protein synthase I (FabB)-like KS, ApeR.

View Article and Find Full Text PDF

Limited light absorption beyond the UV region and rapid photocarrier recombination are critical impediments for the improved photocatalytic performance of carbon quantum dots (CQDs) under visible-light irradiation. Herein, we demonstrate single-step microwave-assisted syntheses of O-CQDs (typical CQDs terminated by carboxylic and hydroxyl functional groups) from a sucrose precursor and Cl-doped CQDs (Cl-CQDs) from a sucralose precursor in short reaction times and without using obligatory strong acids for Cl doping. The doping of Cl into the CQDs is observed to widen the absorption range and facilitate an enhanced separation of photoexcited charge carriers, which is confirmed by the results of optical absorption, photothermal response, and pump-probe ultrafast transient absorption spectroscopy measurements of the O-CQDs and Cl-CQDs.

View Article and Find Full Text PDF

Fatty acid synthesis is essential for bacterial viability. Thus, fatty acid synthases (FASs) represent effective targets for antibiotics. Nevertheless, multidrug-resistant bacteria, including the human opportunistic bacteria, are emerging threats.

View Article and Find Full Text PDF

The period of making a perceptual decision is often followed by a period of rating confidence where one evaluates the likely accuracy of the initial decision. However, it remains unclear whether the same or different neural circuits are engaged during periods of perceptual decision making and confidence report. To address this question, we conducted two functional MRI experiments in which we dissociated the periods related to perceptual decision making and confidence report by either separating their respective regressors or asking for confidence ratings only in the second half of the experiment.

View Article and Find Full Text PDF

It is becoming widely appreciated that human perceptual decision making is suboptimal but the nature and origins of this suboptimality remain poorly understood. Most past research has employed tasks with two stimulus categories, but such designs cannot fully capture the limitations inherent in naturalistic perceptual decisions where choices are rarely between only two alternatives. We conduct four experiments with tasks involving multiple alternatives and use computational modeling to determine the decision-level representation on which the perceptual decisions are based.

View Article and Find Full Text PDF

Understanding how people rate their confidence is critical for the characterization of a wide range of perceptual, memory, motor and cognitive processes. To enable the continued exploration of these processes, we created a large database of confidence studies spanning a broad set of paradigms, participant populations and fields of study. The data from each study are structured in a common, easy-to-use format that can be easily imported and analysed using multiple software packages.

View Article and Find Full Text PDF

Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset.

View Article and Find Full Text PDF

While the perception of stickiness serves as one of the fundamental dimensions for tactile sensation, little has been elucidated about the stickiness sensation and its neural correlates. The present study investigated how the human brain responds to perceived tactile sticky stimuli using functional magnetic resonance imaging (fMRI). To evoke tactile perception of stickiness with multiple intensities, we generated silicone stimuli with varying catalyst ratios.

View Article and Find Full Text PDF