The homeostatic regulation of neuronal activity in glutamatergic and GABAergic synapses is critical for neural circuit development and synaptic plasticity. The induced expression of the transcription factor early growth response 1 (Egr-1) in neurons is tightly associated with many forms of neuronal activity, but the underlying target genes in the brain remained to be elucidated. This study uses a quantitative real-time PCR approach, in combination with in vivo chromatin immunoprecipitation, and reveals that GABAA receptor subunit, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes, are transcriptional targets of Egr-1.
View Article and Find Full Text PDFInductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals.
View Article and Find Full Text PDFIn neuronal development, dendritic outgrowth and arborization are important for the establishment of neural circuit formation. A previous study reported that PSD-95-interacting regulator of spine morphogenesis (Preso) formed a complex with PAK-interacting exchange factor-beta (βPix) via PSD-95/Dlg/ZO-1 (PDZ) interaction. Here, we report that Preso and its binding protein, βPix, are localized in dendritic growth cones.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2012
Tamalin is a scaffold protein known to regulate membrane trafficking through its interaction with cytohesin-2/ARNO, guanine nucleotide exchange factor (GEF) on ADP-ribosylation factor (Arf) 1/6, and induces actin reorganization. However, the neuronal function of Tamalin is not well understood. Here, we report that Tamalin participates in neurite development through the association with exchange factor for Arf6 (EFA6A)/Arf6 signaling.
View Article and Find Full Text PDFTaxol (paclitaxel) is a potent anticancer drug that has been found to be effective against several tumor types, including cervical cancer. However, the exact mechanism underlying the antitumor effects of paclitaxel is poorly understood. Here, paclitaxel induced the apoptosis of cervical cancer HeLa cells and correlated with the enhanced activation of caspase-3 and TAp73, which was strongly inhibited by TAp73beta small interfering RNA (siRNA).
View Article and Find Full Text PDF