Publications by authors named "Jiwei Song"

In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage.

View Article and Find Full Text PDF

V2P (vehicle-to-pedestrian) communication can improve road traffic efficiency, solve traffic congestion, and improve traffic safety. It is an important direction for the development of smart transportation in the future. Existing V2P communication systems are limited to the early warning of vehicles and pedestrians, and do not plan the trajectory of vehicles to achieve active collision avoidance.

View Article and Find Full Text PDF
Article Synopsis
  • - Neural stem cells (NSCs) are crucial for regeneration in the central nervous system but face challenges because of a harsh microenvironment, limiting their effectiveness in therapies.
  • - Research indicates that NSCs engineered to overexpress ciliary neurotrophic factor (CNTF) show improved remyelination effects, but the exact mechanism is not fully understood.
  • - The study reveals that CNTF-NSCs can induce astrocytes to produce cardiotrophin-like cytokine 1 (Clcf1), which promotes the differentiation of oligodendrocyte precursor cells, highlighting Clcf1 as a potential therapeutic target for demyelinating diseases.
View Article and Find Full Text PDF

CD19-targeted CAR T cell immunotherapy has exceptional efficacy for the treatment of B-cell malignancies. B-cell acute lymphocytic leukemia and non-Hodgkin's lymphoma are two common B-cell malignancies with high recurrence rate and are refractory to cure. Although CAR T-cell immunotherapy overcomes the limitations of conventional treatments for such malignancies, failure of treatment and tumor recurrence remain common.

View Article and Find Full Text PDF

To study the effect of photobiomodulation (PBM) on axon regeneration and secretion change of dorsal root ganglion (DRG) under oxidative stress after spinal cord injury (SCI), and further explore the effect of changes in DRG secretion caused by PBM on the polarization of macrophages. The PBM-DRG model was constructed to perform PBM on neurons under oxidative stress simulated in vitro. And the irradiation conditions were as follows: wavelength, 810 nm; power density, 2 mW/cm; irradiation area, 4.

View Article and Find Full Text PDF

In spinal cord injury (SCI), inflammation is a major mediator of damage and loss of function and is regulated primarily by the bone marrow-derived macrophages (BMDMs). Photobiomodulation (PBM) or low-level light stimulation is known to have anti-inflammatory effects and has previously been used in the treatment of SCI, although its precise cellular mechanisms remain unclear. In the present study, the effect of PBM at 810 nm on classically activated BMDMs was evaluated to investigate the mechanisms underlying its anti-inflammatory effects.

View Article and Find Full Text PDF

Previous studies on spinal cord injury (SCI) have confirmed that percutaneous photobiomodulation (PBM) therapy can ameliorate immunoinflammatory responses at sites of injury, accelerate nerve regeneration, suppress glial scar formation and promote the subsequent recovery of locomotor function. The current study was performed to evaluate a large-animal model employing implanted optical fibers to accurately irradiate targeted spinal segments. The method's feasibility and irradiation parameters that do not cause phototoxic reaction were determined, and the methodology of irradiating the spinal cord with near-infrared light was investigated in detail.

View Article and Find Full Text PDF

Macrophages play key roles in the secondary injury stage of spinal cord injury (SCI). M1 macrophages occupy the lesion area and secrete high levels of inflammatory factors that hinder lesion repair, and M2 macrophages can secrete neurotrophic factors and promote axonal regeneration. The regulation of macrophage secretion after SCI is critical for injury repair.

View Article and Find Full Text PDF

Spinal cord injury (SCI) stimulates reactive astrogliosis and the infiltration of macrophages, which interact with each other at the injured area. We previously found Photobiomodulation (PBM) significantly decreases the number of M1 macrophages at the injured area of SCI. But the exact nature of the astrocyte response following PBM and relationship with the macrophage have not been explored in detail.

View Article and Find Full Text PDF

Overweight and obesity are major threats to human health. Tea polyphenols exert multiple beneficial effects on human health and may play a positive regulatory role in fat assumption. However, how tea polyphenols contribute to the regulation of fat metabolism remains unclear to date.

View Article and Find Full Text PDF

Background/aims: Low-level laser therapy (LLLT) leads to complex photochemical responses during the healing process of spinal cord injury (SCI). Confocal Raman Microspectral Imaging (in combination with multivariate analysis) was adopted to illustrate the underlying biochemical mechanisms of LLLT treatment on a SCI rat model.

Methods: Using transversal tissue sections, the Raman spectra can identify areas neighboring the injury site, glial scar, cavity, and unharmed white matter, as well as their correlated cellular alterations, such as demyelination and up-regulation of chondroitin sulfate proteoglycans (CSPGs).

View Article and Find Full Text PDF

Objective To investigate the influence of 810 nm low-level laser of different energy on the polarization of macrophages. Methods The macrophages were isolated from the bone borrow of BALB/c mice and cultured in macrophage colony stimulating factor (M-CSF) conditioned cultural medium. The expression of F4/80 was examined by flow cytometry for identification.

View Article and Find Full Text PDF