Publications by authors named "Jiwei Deng"

Considering the significant role of magnetism induction in two-dimensional (2D) semiconductor materials, we systematically investigate the effects of various dopants from the 3d and 4d transition metal (TM) series, including Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Ag and Cd, on the electronic and magnetic properties of monolayer BS through first-principles calculations. The calculated formation energies indicate that substitutional doping at the B site with various TM atoms could be achieved under S-rich growth conditions. What matters is that with the exception of systems doped with Cu, Tc, and Ag elements, which exhibit non-magnetic semiconductor properties, all other doped systems demonstrate magnetism.

View Article and Find Full Text PDF

Remote-sensing image scene data contain a large number of scene images with different scales. Traditional scene classification algorithms based on convolutional neural networks are difficult to extract complex spatial distribution and texture information in images, resulting in poor classification results. In response to the above problems, we introduce the vision transformer network structure with strong global modeling ability into the remote-sensing image scene classification task.

View Article and Find Full Text PDF

Due to the importance of safety detection of the drum's rope arrangement in the ultra-deep mine hoist and the current situation whereby the speed, accuracy and robustness of rope routing detection are not up to the requirements, a novel machine-vision-detection method based on the projection of the drum's edge is designed in this paper. (1) The appropriate position of the point source corresponding to different reels is standardized to obtain better projection images. (2) The corresponding image processing and edge curve detection algorithm are designed according to the characteristics of rope arrangement projection.

View Article and Find Full Text PDF

Fault diagnosis of rope tension is significantly important for hoisting safety, especially in mine hoists. Conventional diagnosis methods based on force sensors face some challenges regarding sensor installation, data transmission, safety, and reliability in harsh mine environments. In this paper, a novel fault diagnosis method for rope tension based on the vibration signals of head sheaves is proposed.

View Article and Find Full Text PDF

A fiber material is composed of a group of flexible fibers that are assembled in a certain dimensionality. With its good flexibility, high porosity, and large surface area, it demonstrates a great potential in the development of flexible and wearable electronics. In this work, a kind of nickel/active material-coated flexible fiber (NMF) electrodes, such as Ni/MnO/reduced graphene oxide (rGO) NMF electrodes, Ni/carbon nanotube (CNT) NMF electrodes, and Ni/G NMF electrodes, is developed by a new general method.

View Article and Find Full Text PDF

Rapid advances in functional electronics bring tremendous demands on innovation toward effective designs of device structures. Yarn supercapacitors (SCs) show advantages of flexibility, knittability, and small size, and can be integrated into various electronic devices with low cost and high efficiency for energy storage. In this work, functionalized stainless steel yarns are developed to support active materials of positive and negative electrodes, which not only enhance capacitance of both electrodes but can also be designed into stretchable configurations.

View Article and Find Full Text PDF

Hollow urchin-like SnO2 nanospheres with ultrathin nanorods have been successfully synthesized via a simple complex solvothermal route. The formation mechanism of the as-synthesized SnO2 nanospheres was simply explained. When tested as anode, the as-obtained hollow urchin-like SnO2 nanospheres exhibit excellent rate and cycling performances.

View Article and Find Full Text PDF