Publications by authors named "Jiuxing Zhang"

SnTe is becoming a new research focus as an intermediate temperature thermoelectric material for its environment-friendly property. Herein, the SnTe/ZnO core-shell structure prepared by a facile hydrothermal method is firstly constructed to enhance the thermoelectric performance. The characterization results demonstrate that ZnO nanosheets are coated on the surface of SnTe particles by synthesis and converted into ZnO nano-dots by spark plasma sintering.

View Article and Find Full Text PDF

SnTe is an emerging IV-VI metal chalcogenide, but its low Seebeck coefficient and high thermal conductivity mainly originating from the high hole concentration limit its thermoelectric performance. In this work, an amorphous carbon core-shell-coated PbTe nanostructure prepared by a "bottom-up" method is first incorporated into the Sn1-ySbyTe matrix to enhance the thermoelectric performance of SnTe. The square-like PbTe nanoparticles maintain their original cubic morphology and do not grow up obviously after the SPS process due to the coating of the C layer, bringing about the formation of nanopores locally, while Sb alloying induces Sb point defects and Sb-rich precipitates.

View Article and Find Full Text PDF

Cancer-associated thrombosis (CAT) studies have increased in recent years and the quality of guidelines to guide the clinical practice of CAT prevention and treatment becomes crucial. The therapy status of new oral anticoagulants (NOACs) has been established in some thrombotic diseases, but the evidence for CAT remains unconvincing. The aim of this research is to evaluate the quality of CAT guidelines and discuss the role of NOAC in CAT.

View Article and Find Full Text PDF

In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass.

View Article and Find Full Text PDF

To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis.

View Article and Find Full Text PDF

The inherently high magnetic anisotropy and nanoscale grain size in a Sm5Co19 compound result in an intrinsic coercivity far higher than those of known Sm-Co compounds prior to orientation treatment. The combination of ultrahigh intrinsic coercivity, high Curie temperature and low coercivity temperature coefficient of nanocrystalline Sm5Co19 as a single phase material shows it to be a very promising compound to develop outstanding high-temperature permanent magnets.

View Article and Find Full Text PDF

The single-phase ultrafine nanocrystalline SmCo(3) compound with a high coercivity of 33 kOe and a Curie temperature of 925 K was prepared using a simple and efficient method, which took advantages of the concurrent processes of nanocrystallization and densification during spark plasma sintering. The crystal structure of the nanocrystalline SmCo(3) compound was constructed. As compared with the conventional microcrystalline SmCo(3) compound, a large axial ratio c/a = 4.

View Article and Find Full Text PDF

A novel route for the preparation of the single-phased Sm2Co17 nanocrystalline bulk with ultrafine grain sizes was proposed. It was found that the nanocrystalline Sm20Co17 has a hexagonal crystal structure at the room temperature, which shows a different thermal stability from the conventional polycrystalline alloy. The intrinsic coercivity of the nanocrystalline Sm2Co17 with a hexagonal crystal structure was greatly increased as compared with the single-phased polycrystalline alloy with a rhombohedral structure.

View Article and Find Full Text PDF

By combining the inert-gas condensation with the SPS technology in an entirely closed system with the oxygen concentration below 0.5 ppm, the pure Dy bulk with the ultrafine nanocrystalline structure has been prepared. Thus a novel and efficient route of preparing nano rare-earth metals, as well as metallic nanomaterials that are highly reactive in the air, is proposed.

View Article and Find Full Text PDF

The preparation and characterization of pure rare-earth-metal bulks with controllable nanostructures are reported in this paper. A novel 'oxygen-free' in situ synthesis technique that combines inert-gas condensation with spark plasma sintering (SPS) technology is proposed. Taking into account the special mechanisms of SPS consolidation and the scale effects of nanoparticles, we introduced practical procedures for preparing rare-earth bulks of amorphous, mixed amorphous and nanocrystals, and nanocrystalline microstructures, respectively.

View Article and Find Full Text PDF

Cobalt nanocrystalline powders with the average grain size of about 17 nm were prepared by high-energy mechanical milling. Grain growth in highly pure and particle-containing nanocrystalline Co powders were investigated respectively by a series of annealing experiments at different temperatures. The characteristics of incontinuous grain growth were found in both the pure and the particle-containing nanocrystalline powders.

View Article and Find Full Text PDF