The Broad Learning System (BLS) has demonstrated strong performance across a variety of problems. However, BLS based on the Minimum Mean Square Error (MMSE) criterion is highly sensitive to label noise. To enhance the robustness of BLS in environments with label noise, a function called Logarithm Kernel (LK) is designed to reweight the samples for outputting weights during the training of BLS in order to construct a Logarithm Kernel-based BLS (L-BLS) in this paper.
View Article and Find Full Text PDF