Publications by authors named "Jiuqiang Wang"

Background: TBK1 positively regulates the growth factor-mediated mTOR signaling pathway by phosphorylating mTOR. However, it remains unclear how the TBK1-mTOR signaling pathway is regulated. Considering that STING not only interacts with TBK1 but also with MARCH1, we speculated that MARCH1 might regulate the mTOR signaling pathway by targeting TBK1.

View Article and Find Full Text PDF

The similarity test of ship stiffened plate structures under underwater explosions is a cost-effective and efficient method to evaluate the vitality of ships and guide the design of their shock resistance. This study focuses on the nonlinear impact response model tests of ship stiffened plate structures and their similarity laws with actual ships. The vertical motion of the ship stiffened plate structure is characterized by the Hurst index, and an equivalent relationship between the Hurst index of the model and the prototype is derived from classical similarity law.

View Article and Find Full Text PDF

Liver kinase B1 (LKB1), an evolutionarily conserved serine/threonine kinase, is a master regulator of the AMPK subfamily and controls cellular events such as polarity, proliferation, and energy homeostasis. Functions and mechanisms of the LKB1-AMPK axis at specific subcellular compartments, such as lysosome and mitochondria, have been established. AMPK is known to be activated at the Golgi; however, functions and regulatory mechanisms of the LKB1-AMPK axis at the Golgi apparatus remain elusive.

View Article and Find Full Text PDF

The mammalian target of rapamycin complex1 (mTORC1) can response to amino acid to regulate metabolism and cell growth. GATOR2 act as important role in amino acid mediated mTORC1 signaling pathway by repressing GTPase activity (GAP) of GATOR1. However, it is still unclear how GATOR2 regulates mTORC1 signaling pathway.

View Article and Find Full Text PDF

As a member of the pattern recognition receptors (PRRs) involving in the innate immune system, Toll-like receptors (TLRs) can sense a wide range of microbial pathogens and combat infections by producing antimicrobial products, inflammatory cytokines, and chemokines. All TLRs, with the exception of TLR3, activate a signalling cascade via the myeloid differentiation primary response gene 88 (MyD88). Therefore, the activation of MyD88-dependent signalling pathway must be finely controlled.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection is associated with microcephaly in newborns and serious neurological complications in adults. Apoptosis of neural progenitor cells induced by ZIKV infection is believed to be a main reason for ZIKV infection-related microcephaly. However, the detailed mechanism of ZIKV infection-induced apoptosis remains to be elucidated.

View Article and Find Full Text PDF

PINK1/Parkin-mediated mitophagy is an important process in selective removal of damaged mitochondria, in which translocation of Parkin to damaged mitochondria is recognized as an initiation step. At present, how the damaged mitochondria are selectively recognized and targeted by Parkin is not fully understood. Here we show that Miro2, an outer mitochondrial membrane protein, undergoes demultimerization from a tetramer to a monomer and alteration in mitochondrial localization upon CCCP treatment, suggesting a CCCP-induced realignment of Miro2.

View Article and Find Full Text PDF

TMCO1 (transmembrane and coiled-coil domains 1) is an endoplasmic reticulum (ER) transmembrane protein that actively prevents Ca stores from overfilling. To characterize its physiological function(s), we generated Tmco1 knockout (KO) mice. In addition to the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, Tmco1 females manifest gradual loss of ovarian follicles, impaired ovarian follicle development, and subfertility with a phenotype analogous to the premature ovarian failure (POF) in women.

View Article and Find Full Text PDF

DNA damage response (DDR) is essential for genome stability and human health. Recently, several RNA binding proteins (RBPs), including fused-in-sarcoma (FUS), have been found unexpectedly to modulate this process. The role of FUS in DDR is closely linked to the pathogenesis of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord.

View Article and Find Full Text PDF

Currently, numerous antipsychotic agents have been developed in the area of pharmacological treatment of schizophrenia. However, the molecular mechanism underlying multi targets of antipsychotics were yet to be explored. In this study we performed a computational network analysis based on targets of antipsychotic agents.

View Article and Find Full Text PDF

Deficiency of Parkin is a major cause of early-onset Parkinson's disease (PD). Notably, PD patients also exhibit a significantly higher risk in melanoma and other skin tumors, while the mechanism remains largely unknown. In this study, we show that depletion of Parkin causes compromised cell viability and genome stability after ultraviolet (UV) radiation.

View Article and Find Full Text PDF

Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). However, investigation of genetic basis from the perspective of systematic biology and integrative genomics remains scarce.In this study, we explored genetic basis of EC based on GWAS data and implemented a series of bioinformatics methods including functional annotation, expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and pathway grouped network analysis.

View Article and Find Full Text PDF

Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel.

View Article and Find Full Text PDF

Mitochondrial sequestration by autophagosomes is a key step in mitophagy while the mechanisms mediating this process are not fully understood. It has been reported that Endophilin B1 (EB1) promotes mitochondrial sequestration by binding and shaping membrane. However, the role of EB1 homolog Endophilin B2 (EB2) in mitophagy remains unclear.

View Article and Find Full Text PDF

Objectives: Huntington's disease (HD) is an inherited human neurodegenerative disorder characterized by uncontrollable movement, psychiatric disturbance and cognitive decline. Impaired proliferative/differentiational potentials of adult neural progenitor cells (ANPCs) have been thought to be a pathogenic mechanism involved in it. In this study, we aimed to elucidate intrinsic properties of ANPCs subjected to neurodegenerative condition in YAC128 HD mice.

View Article and Find Full Text PDF

5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntington's disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development.

View Article and Find Full Text PDF

Huntington disease (HD) is an inherited, fatal neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Indications of oxidative stress are apparent in brain tissues from both HD patients and HD mouse models; however, the origin of this oxidant stress remains a mystery. Here, we used a yeast artificial chromosome transgenic mouse model of HD (YAC128) to investigate the potential connections between dysregulation of cytosolic Ca(2+) signaling and mitochondrial oxidative damage in HD cells.

View Article and Find Full Text PDF

The artificial 5-helix can inhibit the formation of trimer-of-hairpins structure during the course of HIV-directed membrane fusion and then inhibit human immunodeficiency virus (HIV) infecting target cells. But 5-helix was apt to form inclusion body when expressed directly in prokaryotic cell and was difficult to renature, which causes inconvenience to future study. We found a proper expression vector by simulating protein structure.

View Article and Find Full Text PDF