Publications by authors named "Jiumeng Zhang"

A nucleus-targeted nanocomposite was prepared by clickable amino acid-tuned one-step co-assembly of proteins and chemotherapeutics. The nanocomposite with favorable pharmacokinetic behavior can effectively accumulate in the nucleus, thereby significantly enhancing the anticancer therapeutic effect both and .

View Article and Find Full Text PDF
Article Synopsis
  • The nucleus is a key organelle in cells, crucial for regulating reproduction, metabolism, and the cell cycle, and targeting it with drugs can enhance therapeutic outcomes in precision medicine.
  • Successful delivery of drugs to the nucleus faces challenges due to biological barriers, highlighting the need for improved drug delivery systems.
  • The text reviews current advancements in nucleus-targeted drug delivery, discussing the structure of the nucleus, delivery strategies, and the obstacles and potential solutions for better clinical applications.
View Article and Find Full Text PDF

A nucleus-targeted enzyme prodrug nanocomposite, assembled from β-cyclodextrin-lysine (CL), catalase (CAT), Pt(IV) and chlorin e6 (Ce6), was developed for self-augmenting cascade photo-chemo therapy of tumors. It can effectively transport through the cytoplasm and accumulate in the nucleus, thereby significantly inhibiting tumor growth and lung metastasis.

View Article and Find Full Text PDF

The unique structure of the periodontium, including the alveolar bone, cementum, and periodontal ligament (PDL), presents difficulties for the regeneration of its intricate organization. Irreversible structural breakdown of the periodontium increases the risk of tooth loosening and loss. Although the current therapies can restore the periodontal hard tissues to a certain extent, the PDL with its high directionality of multiple groups with different orientations and functions cannot be reconstructed.

View Article and Find Full Text PDF

Peripheral nerve injury is a common disease that often causes disability and challenges surgeons. Drug-releasable biomaterials provide a reliable tool to regulate the nerve healing-associated microenvironment for nerve repair. Here, a self-adhesive bandage is designed that can form a wrap surrounding the injured nerve to promote nerve regeneration and recovery.

View Article and Find Full Text PDF

An additive manufacturing technology based on projection light, digital light processing (DLP), three-dimensional (3D) printing, has been widely applied in the field of medical products production and development. The precision projection light, reflected by a digital micromirror device of million pixels instead of one focused point, provides this technology both printing accuracy and printing speed. In particular, this printing technology provides a relatively mild condition to cells due to its non-direct contact.

View Article and Find Full Text PDF

Three-dimensional (3D) printing technology has great potential in advancing clinical medicine. Currently, the in vivo application strategies for 3D-printed macroscale products are limited to surgical implantation or in situ 3D printing at the exposed trauma, both requiring exposure of the application site. Here, we show a digital near-infrared (NIR) photopolymerization (DNP)-based 3D printing technology that enables the noninvasive in vivo 3D bioprinting of tissue constructs.

View Article and Find Full Text PDF

Nerve conduits provide an advanced tool for repairing the injured peripheral nerve that often causes disability and mortality. Currently, the efficiency of conduits in repairing peripheral nerve is unsatisfying. Here, we show a functional nanoparticle-enhanced nerve conduit for promoting the regeneration of peripheral nerves.

View Article and Find Full Text PDF

Injectable microgels show great promising applications in cell therapy and drug delivery. Currently, there remains a challenge to rapidly and cost-effectively fabricate customized microgels. Here, we present a digital light processing based three-dimensional (3D) printing process to fabricate microgels with tailored shapes and sizes.

View Article and Find Full Text PDF

Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem.

View Article and Find Full Text PDF

Gene therapy has great promise for glioblastoma treatment; however, it remains a great challenge to efficiently deliver genes to the brain. The incomplete resection of glioblastoma always leads to poor prognosis. Here, a 3D-engineered conformal implant for eradicating the postsurgery residual glioblastoma is designed.

View Article and Find Full Text PDF

End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy.

View Article and Find Full Text PDF

Conventional surgical methods can not completely remove the tumor cells, and an inevitable recurrence always results in death. In this study, we prepared a conformal hydrogel nanocomposite with potential to inhibit the recurrence of glioma. Based on the MRI of a patient's brain tumor cavity (BTC), we 3D-printed a mould for preparing the customized implants that could match the resection cavity.

View Article and Find Full Text PDF
Article Synopsis
  • - The study presents a 3D-printing technology to create bio-conduits made of cryopolymerized gelatin methacryloyl (cryoGelMA), aimed at bridging peripheral nerve defects and enhancing regeneration with integrated adipose-derived stem cells.
  • - These conduits can be designed in various shapes, like multichannel or bifurcating structures, and degrade completely in 2-4 months when implanted in living organisms.
  • - In rat models, the bio-conduit effectively supported nerve regeneration over a 10 mm gap, showing performance similar to traditional autografts, indicating potential for future clinical applications.
View Article and Find Full Text PDF

Gene therapy has promising applications in ovarian cancer therapy. Blocking the function of the survivin protein could lead to the growth inhibition of cancer cells. Herein, we used degradable heparin-polyethyleneimine (HPEI) nanoparticles to deliver a dominant-negative human survivin T34A (hs-T34A) gene to treat ovarian cancer.

View Article and Find Full Text PDF