Ethnopharmacological Relevance: Chinese materia medica (CMM) has a long history and extensive experience in treating ischemic stroke. Wen Ezhu, the rhizome of Curcuma wenyujin Y.H.
View Article and Find Full Text PDFTo address the shortcomings of the recently proposed Fick's Law Algorithm, which is prone to local convergence and poor convergence efficiency, we propose a multi-strategy improved Fick's Law Algorithm (FLAS). The method combines multiple effective strategies, including differential mutation strategy, Gaussian local mutation strategy, interweaving-based comprehensive learning strategy, and seagull update strategy. First, the differential variation strategy is added in the search phase to increase the randomness and expand the search degree of space.
View Article and Find Full Text PDFInflammatory neutrophils (INEs), motivated by cytokines, continue to migrate into the inflamed joints, driving the development of RA. Hence, inducing apoptosis of INEs to reduce recruitment at inflamed joints is an effective strategy for the treatment of RA. However, simply apoptotic INEs may trigger the release of neutrophil extracellular traps (NETs) and accelerate the inflammatory process.
View Article and Find Full Text PDFDiabetic chronic wounds remain a major clinical challenge with long-term inflammatory responses and extreme oxidative damage. Hence, a pH-responsive injectable multifunctional hydrogel [Gel/CUR-FCHO/Mg (GCM) micromotors] via a Schiff base reaction between gelatin and benzaldehyde-grafted Pluronic F127 drug-loaded micelles (FCHO) was fabricated for the first time. Dynamic Schiff base linkage endowed the GCM hydrogel with the ability to be self-healing, injectable, and pH-responsive for on-demand drug delivery at the wound site.
View Article and Find Full Text PDFDepression is one of the most common mental diseases, which seriously affects patients' physical and mental health. Emerging evidence has indicated that oxidative stress (OS) is a major cause of neurodegeneration involved in the pathogenesis of depression. Consequently, targeted reactive oxygen species (ROS) elimination is regarded as a promising strategy for efficient depression therapy.
View Article and Find Full Text PDFThe traditional surgical technique for esophageal cancer is mainly open esophagectomy. With the innovation of surgical instruments, it is necessary to re-optimize the minimally invasive surgery. Therefore, single-port thoracoscopic minimally invasive esophagectomy (SPTE) is an important direction of development.
View Article and Find Full Text PDFThe highly contagious tuberculosis is a leading infectious killer, which urgently requires effective diagnosis and treatment methods. To address these issues, three lipophilic aggregation-induced emission (AIE) photosensitizers (TTMN, TTTMN, and MeOTTMN) are selected to evaluate their labeling and antimicrobial properties in vitro and in vivo. These three lipophilic AIEgens preserve low cytotoxicity and achieve real-time and non-invasive visualization of the process of mycobacteria infection in vitro and in vivo.
View Article and Find Full Text PDFTuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant public health threat with high rates of infection and mortality. Rapid and reliable theranostics of TB are essential to control transmission and shorten treatment duration. In this study, we report two cationic aggregation-inducing emission luminogens (AIEgens) named TTVP and TTPy, which have different functional charged moieties, to investigate their potential for simultaneous tracing and photodynamic therapy in TB infection.
View Article and Find Full Text PDFAccurate assessment of anxiety disorders and their symptomatology in schizophrenic patients is important for prognosis and treatment. Measuring anxiety on the traditional anxiety assessment scales such as the Hamilton Anxiety Rating (HAMA) Scale or the self-rating depression scale (SAS) is challenging and often considered unsuitable for assessing anxiety symptoms in patients with schizophrenia. The Staden schizophrenia anxiety rating scale (S-SARS) has been shown to reliably measure specified and undifferentiated anxiety in schizophrenia.
View Article and Find Full Text PDFAmplifying "eat me signal" during tumor immunogenic cell death (ICD) cascade is crucial for tumor immunotherapy. Inspired by the indispensable role of adenosine triphosphate (ATP, a necessary "eat me signal" for ICD), a versatile ICD amplifier was developed for chemotherapy-sensitized immunotherapy. Doxorubicin (DOX), ATP and ferrous ions (Fe) were co-assembled into nanosized amplifier (ADO-Fe) through stacking and coordination effect.
View Article and Find Full Text PDFImmunosuppressive tumor microenvironment (ITM), poor immunogenicity, and low tumor penetration markedly reduce the capability of tumor immunotherapy. To address these challenges, we successfully engineered acidity-triggered nanoparticles (NPs) with size reduction and charge switchable features to boost tumor immunotherapy based on indoleamine 2,3-dioxygenase 1 siRNA (IDO1 siRNA) and immunogenic cell death (ICD). The NPs significantly augmented tumor penetrating ability and improved cellular uptake via the detachment of 2,3-dimethylmaleic anhydride-grafted poly(ethylene glycol)-poly(L-lysine) copolymer (mPEG-PLL-DMA, PLM) from large-sized NPs with a negative charge.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2022
Most of tumors are located in deep-depth of animals, and the therapy of deep-seated tumors remains a severe challenge due to the performance reduction of promising technologies including phototherapy. To solve the problem, herein we have developed a hafnium-hemoporfin frameworks (HfHFs) as multifunctional theranostic nanoplatforms for synergetic sonodynamic therapy (SDT) and radiation therapy (RT) of deep-seated tumors. HfHFs are constructed by a sonication-assisted assembly route with hematoporphyrin monomethyl ether (HMME) sonosensitizer molecules as bridging linkers and Hf as metal nodes.
View Article and Find Full Text PDFCircumventing immune resistance and boosting immune response is the ultimate goal of cancer immunotherapy. Herein, we reported a tumor-associated macrophage (TAM) membrane-camouflaged nanodecoy containing a self-amplifying reactive oxygen species (ROS)-sensitive prodrug nanoparticle for specifically inducing immunogenic cell death (ICD) in combination with TAM depletion. A versatile ROS-cleavable camptothecin (CPT) prodrug (DCC) was synthesized through a thioacetal linker between CPT and the ROS generator cinnamaldehyde (CA), which could self-assemble into a uniform prodrug nanoparticle to realize a positive feedback loop of "ROS-triggered CA/CPT release and CA/CPT-mediated ROS generation.
View Article and Find Full Text PDFMicroRNAs are crucial tumor regulators to tumor development and progression. MiR-30c-2-3p can suppress malignant progression of tumor cells, but no study has reported the modulatory process of miR-30c-2-3p in gastric adenocarcinoma (GA). We herein investigated role of miR-30c-2-3p in GA cells.
View Article and Find Full Text PDFA critical obstacle for programmed death ligand 1 (PD-L1) immune checkpoint blockade immunotherapy is the insufficient T cell infiltration and low immunogenicity of tumor cells. Improving tumor immunogenicity through immunogenic cell death (ICD) can make tumor sensitive to PD-L1 checkpoint blockade immunotherapy. Herein, a phenolic based tumor-permeated nano-framework (EGPt-NF) was fabricated by cross-linking phenylboric acid modified platinum nanoparticles (PBA-Pt, ICD inducer) and epigallocatechin-3--gallate (EGCG, PD-L1 inhibitor) pH-reversible borate ester.
View Article and Find Full Text PDFThe tumor immunosuppressive microenvironment (TIM) greatly hindered the efficacy of cancer immunotherapy. Overexpressed indoleamine 2,3-dioxygenase-1 (IDO1) in tumor tissues plays a vital role in TIM generation, and downregulation of IDO1 expression may reverse TIM. Inspired by the Watson-Crick base-pairing rule, a versatile noncationic miRNA vector (miDAC@PDA) is developed for cancer immunotherapy.
View Article and Find Full Text PDFMultiple biological barriers and tumor metastasis severely impede the tumor therapy. To address these adversities, an acid-activated poly (ethylene glycol)-poly-l-lysine-2,3-dimethylmaleic anhydride/poly (ε-caprolactone)-poly(l-arginine)/β-lapachone nanoparticles (mPEG-PLL-DMA/PCL-P(L-arg)/β-Lap, PLM/PPA/β-Lap NPs) were constructed with charge-reversal and size-reduction for β-Lap delivery with a cascade reaction of reactive oxygen species (ROS) and nitric oxide (NO) production. The nanosystem exhibited highly penetrable, superior cellular uptake and desirable endo-lysosomal escape thanks to size-reduction, charge-reversal and proton sponge, respectively.
View Article and Find Full Text PDFThe limited infiltration of specific T cells in an immunosuppressive microenvironment is a major challenge for cancer immunotherapy. Reversing tumor microenvironment and inducing an antitumor immune response are crucial for cancer therapy. Here, phenylboronic acid (PBA) derivative-stabilized ultrasmall platinum nanoparticles (PBA-Pt) and dextran-coated BLZ-945 nanoparticles (DNPs) were co-assembled through a pH-responsive borate ester bond to construct a versatile reversible shielding multifunctional nanoplatform (Pt@DNPs) for the first time.
View Article and Find Full Text PDFBackground: Lung cancer contributes significantly to the total of cancer-linked deaths globally, accounting for 1.3 million deaths each year. Preoperative albumin (Alb) concentration and neutrophil-to-lymphocyte ratio (NLR) may reflect chronic inflammation and be used to predict lung cancer outcomes.
View Article and Find Full Text PDFCancer stem-like cells (CSLCs) have been considered to be one of the main problems in tumor treatment owing to high tumorigenicity and chemotherapy resistance. In this study, we synthesized a novel mitochondria-target derivate, triphentlphosphonium-resveratrol (TPP-Res), and simultaneously encapsulated it with doxorubicin (Dox) in pH-sensitive liposomes (PSL (Dox/TPP-Res)), to reverse chemotherapeutic resistance of CSLCs. PSL (Dox/TPP-Res) was approximately 165 nm in size with high encapsulation efficiency for both Dox and TPP-Res.
View Article and Find Full Text PDFThere are two severe obstacles in cancer immunotherapy. The first is that the low response rate challenges the immune response owing to the immunosuppressive tumor microenvironment (ITM) and poor immunogenicity of the tumor. The second obstacle is that the dense and intricate pathophysiology barrier seriously restricts deep drug delivery in solid tumors.
View Article and Find Full Text PDFIn cancer therapy, it is acknowledged that large-size nanoparticles stay in the circulation system for a long time, but their permeability to tumor tissues is poor. To address the conflicting need for prolonging circulation time and favorable tumor tissue penetration ability, a charge conversional multifunctional nanoplatform was strategically designed to improve the efficacy of small interfering RNA (siRNA) therapy against nonsmall cell lung cancer (NSCLC). The development of nanodrug delivery systems (NDDSs) was constructed by loading siRNA on polyamidoamine (PAMAM) dendrimers to build small-sized PAM/siRNA electrostatic interaction and then capped with a pH-triggered copolymer poly(ethylene glycol) methyl ether (mPEG)-poly-l-lysine (PLL)-2,3-dimethylmaleic anhydride (DMA) (shorted as PLM) under physiological conditions.
View Article and Find Full Text PDFThe present study aimed to introduce a novel method of cervical esophagogastric anastomosis, so-called 'modified one-piece mechanical anastomosis' (MOMA) in McKeown esophagogastrectomy and to compare its feasibility, efficacy and safety with those of 'conventionally double-layer hand-sewn anastomosis' (CDHA). Between March 2016 and March 2018, 80 consecutive patients with thoracic esophageal squamous cell carcinoma undergoing McKeown esophagogastrectomy with a curative intent were included in the present study. Among them, 40 received MOMA and the other 40 received CDHA.
View Article and Find Full Text PDFBackground: The assessment of the severity of coronavirus disease 2019 (COVID-19) by clinical presentation has not met the urgent clinical need so far. We aimed to establish a deep learning (DL) model based on quantitative computed tomography (CT) and initial clinical features to predict the severity of COVID-19.
Methods: One hundred ninety-six hospitalized patients with confirmed COVID-19 were enrolled from January 20 to February 10, 2020 in our centre, and were divided into severe and non-severe groups.