Recent studies have demonstrated that the analysis of brain functional networks (BFNs) is a powerful tool for exploring brain aging and age-related neurodegenerative diseases. However, investigating the mechanism of brain aging associated with dynamic BFN is still limited. The purpose of this study is to develop a novel scheme to explore brain aging patterns by constructing dynamic BFN using resting-state functional magnetic resonance imaging data.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2023
Objective: Electroencephalogram (EEG) signal recognition based on deep learning technology requires the support of sufficient data. However, training data scarcity usually occurs in subject-specific motor imagery tasks unless multisubject data can be used to enlarge training data. Unfortunately, because of the large discrepancies between data distributions from different subjects, model performance could only be improved marginally or even worsened by simply training on multisubject data.
View Article and Find Full Text PDFIt has been confirmed that motor imagery (MI) and motor execution (ME) share a subset of mechanisms underlying motor cognition. In contrast to the well-studied laterality of upper limb movement, the laterality hypothesis of lower limb movement also exists, but it needs to be characterized by further investigation. This study used electroencephalographic (EEG) recordings of 27 subjects to compare the effects of bilateral lower limb movement in the MI and ME paradigms.
View Article and Find Full Text PDFThe common spatial patterns (CSP) technique is an effective strategy for the classification of multichannel electroencephalogram (EEG) signals. However, the objective function expression of the conventional CSP algorithm is based on the L2-norm, which makes the performance of the method easily affected by outliers and noise. In this paper, we consider a new extension to CSP, which is termed capped L21-norm-based common spatial patterns (CCSP-L21), by using the capped L21-norm rather than the L2-norm for robust modeling.
View Article and Find Full Text PDFComput Intell Neurosci
December 2021
Objective: Action intention understanding EEG signal classification is indispensable for investigating human-computer interactions and intention understanding mechanisms. Numerous investigations on classification tasks extract classification features by using graph theory metrics; however, the classification results are usually not good.
Method: To effectively implement the task of action intention understanding EEG signal classification, we proposed a new feature extraction method by improving discriminative spatial patterns.
IEEE Trans Cybern
December 2017
Crowdsourcing has become a popular service computing paradigm for requesters to integrate the ubiquitous human-intelligence services for tasks that are difficult for computers but trivial for humans. This paper focuses on crowdsourcing complex tasks by team formation in social networks (SNs) where a requester connects to a large number of workers. A good indicator of efficient team collaboration is the social connection among workers.
View Article and Find Full Text PDF