Three-dimensional pulse wave's morphologies are essential biomarkers for assessing cardiovascular functionality. However, existing methods only provide sparse amplitude representations, limiting their diagnostic potential. This study employs a photometric stereo approach to enhance the spatial resolution of pulse waves by capturing video footage of skin surface micro-vibrations induced by blood volume fluctuations in underlying arteries.
View Article and Find Full Text PDFObjectives: This study aims to develop an automated approach for estimating the vertical rotation of the thorax, which can be used to assess the technical adequacy of chest X-ray radiographs (CXRs).
Methods: Total 800 chest radiographs were used to train and establish segmentation networks for outlining the lungs and spine regions in chest X-ray images. By measuring the widths of the left and right lungs between the central line of segmented spine and the lateral sides of the segmented lungs, the quantification of thoracic vertical rotation was achieved.
. The widespread adoption of Photoplethysmography (PPG) as a non-invasive method for detecting blood volume variations and deriving vital physiological parameters reflecting health status has surged, primarily due to its accessibility, cost-effectiveness, and non-intrusive nature. This has led to extensive research around this technique in both daily life and clinical applications.
View Article and Find Full Text PDFDentomaxillofac Radiol
September 2024
Objective: This study aims to develop a facial vascular enhancement imaging system and analyze vascular distribution in the facial region to assess its potential in preventing unintended intravascular injections during cosmetic facial filling procedures.
Methods: A facial vascular enhancement imaging system based on optical detection technology was designed, and volunteers were recruited. The system was utilized to detect and analyze vascular distribution in various anatomical regions of the faces.
J Cancer Res Clin Oncol
April 2024
Background: Extracellular vesicles (EVs) can mediate cell-to-cell communication and affect various physiological and pathological processes in both parent and recipient cells. Currently, extensive research has focused on the EVs derived from cell cultures and various body fluids. However, insufficient attention has been paid to the EVs derived from tissues.
View Article and Find Full Text PDFThe vast amount of reflectance information obtained from the hyperspectral imaging devices offers great opportunities for investigating the function and structure of human tissue. However, the captured hyperspectral data often contain various noises due to the intrinsic imperfection of associated electrical and optical imaging components. This work proposed an automatic total variation algorithm to suppress the noises while preserving the details of the spectral and spatial information.
View Article and Find Full Text PDFA numerical approach has been proposed to identify bands for optimally estimating the concentration of three types of viable chromophores within biological tissue. The bands are determined according to the condition number of absorption matrix associated with the attenuation coefficients of chromophores. The effectiveness of different sets of selected band combination was verified by using the spectral reflectance images of skin tissue acquired from standard forearm vascular occlusion tests via a spectroradiometer.
View Article and Find Full Text PDFBackground: Manual or machine-based analysis of chest radiographs needs the images acquired with technical adequacy. Currently, the equidistance between the medial end of clavicles and the center of spinous processes serves as the only criterion to assess whether a frontal PA chest radiograph is taken with any rotation. However, this measurement is normally difficult to implement because there exists overlapping of anatomies within the region.
View Article and Find Full Text PDFBackground: Virtual radiographic simulation has been found educationally effective for students to practice their clinical examinations remotely or online. A free available virtual simulator-ImaSim has received particular attention for radiographic science education because of its portability, free of charge and no constrain of location and physical facility. However, it lacks evidence to validate this virtual simulation software to faithfully reproduce radiographs comparable to that taken from a real X-ray machine to date.
View Article and Find Full Text PDFPurpose: Glaucoma is a chronic and irreversible retinopathy threatening the vision of millions of patients around the world. Its early diagnosis and treatment can help to prolong the period of sight deterioration from no visual impairment to blindness, whereas the screening and diagnosis of glaucoma in clinical remains challenging because some key assessment criteria like cup-to-disc ratio is limited by subjective analysis and intra- and inter-observer variability. This paper exploits the potential of new augmented image data of the optic nerve head (ONH) combining with the latest deep learning networks to achieve better diagnosis of glaucoma.
View Article and Find Full Text PDFThis paper describes experimental evaluations of an optical scanning device for skin surface recovery using multiple light source photometric stereo method. The portable optical device based on the principle of six-light photometric stereo was developed and subjected to evaluation and advancement through clinical trials for the purpose of monitoring skin conditions. As the device can provide objective topographic data for the description of the skin surface condition, the evaluation processes are mainly applied on skin and and compared with a commercial product, PRIMOS, which has been so far considered as a standard device used for skin surface measurement.
View Article and Find Full Text PDFWe investigated a method to quantify field-state wheat RSA in a phenotyping way, depicting the 3D topology of wheat RSA in 14d periods. The phenotyping procedure, proposed for understanding the spatio-temporal variations of root-soil interaction and the RSA dynamics in the field, is realized with a set of indices of mm scale precision, illustrating the gradients of both wheat root angle and elongation rate along soil depth, as well as the foraging potential along the side directions. The 70d was identified as the shifting point distinguishing the linear root length elongation from power-law development.
View Article and Find Full Text PDFTwo-dimensional asymmetry, border irregularity, colour variegation and diameter (ABCD) features are important indicators currently used for computer-assisted diagnosis of malignant melanoma (MM); however, they often prove to be insufficient to make a convincing diagnosis. Previous work has demonstrated that 3D skin surface normal features in the form of tilt and slant pattern disruptions are promising new features independent from the existing 2D ABCD features. This work investigates that whether improved lesion classification can be achieved by combining the 3D features with the 2D ABCD features.
View Article and Find Full Text PDFComputerised analysis on skin lesion images has been reported to be helpful in achieving objective and reproducible diagnosis of melanoma. In particular, asymmetry in shape, colour and structure reflects the irregular growth of melanin under the skin and is of great importance for diagnosing the malignancy of skin lesions. This paper proposes a novel asymmetry analysis based on a newly developed pigmentation elevation model and the global point signatures (GPSs).
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2011
This paper proposes a novel reflectional asymmetry descriptor to quantize the asymmetry of the cutaneous lesions for the discrimination of malignant melanoma from benign nevi. A pigmentation elevation model of the biological indexes is first constructed, and then the asymmetry descriptor is computed by minimizing the histogram difference of the global point signatures of the pigmentation model. Melanin and Erythema Indexes are used instead of the original intensities in colour space to characterize the pigmentation distribution of the cutaneous lesions.
View Article and Find Full Text PDFBackground: Early identification of malignant melanoma with the surgical removal of thin lesions is the most effective treatment for skin cancers. A computer-aided diagnostic system assists to improve the diagnostic accuracy, where segmenting lesion from normal skin is usually considered as the first step. One of the challenges in the automated segmentation of skin lesions arises from the fact that darker areas within the lesion should be considered separate from the more general suspicious lesion as a whole, because these pigmented areas can provide significant additional diagnostic information.
View Article and Find Full Text PDFBackground/purpose: It has been observed that disruptions in skin patterns are larger for malignant melanoma (MM) than benign lesions. In order to extend the classification results achieved for 2D skin patterns, this work intends to investigate the feasibility of lesion classification using 3D skin surface texture, in the form of surface normals acquired from a previously built six-light photometric stereo device.
Material And Methods: The proposed approach seeks to separate MM from benign lesions through analysis of the degree of surface disruptions in the tilt and slant direction of surface normals, so called skin tilt pattern and skin slant pattern.
Background/purpose: The optical appearance of human skin is highly dependent on the interaction between the illumination (type and position), observer position and the skin surface structure. Different currently available photographic techniques record different aspects of this appearance, each providing its own incomplete description. This limits their usefulness, especially for pigmented skin lesion diagnosis.
View Article and Find Full Text PDFZhongguo Yi Liao Qi Xie Za Zhi
November 2002
The computer-assisted surgery system is a complex system. All of the errors can be attributed to the loss of correspondence between the world coordinate system in the operation room and the virtual world coordinate system obtained from the multi-model medical images. The system's accuracy is composed of the accuracy of the localizer and that of registration.
View Article and Find Full Text PDF