Coronary artery disease (CAD) or atherosclerotic heart disease is one of the most common types of cardiovascular disease. Although percutaneous coronary intervention [PCI or percutaneous transluminal coronary angioplasty (PTCA)] is a mature, well-established technique used to treat atherosclerotic heart disease, its long‑term therapeutic effects are compromised by a high incidence of vascular restenosis (RS) following angioplasty. In our previous study, we found that the principal gap junction protein, connexin 43 (Cx43), in vascular smooth muscle cells (VSMCs) was involved in the development of vascular RS following angioplasty-induced balloon injury.
View Article and Find Full Text PDFPercutaneous coronary intervention [PCI or percutaneous transluminal coronary angioplasty (PTCA)] has been developed into a mature interventional treatment for atherosclerotic cardiovascular disease. However, the long-term therapeutic effect is compromised by the high incidence of vascular restenosis following angioplasty, and the underlying mechanisms of vascular restenosis have not yet been fully elucidated. In the present study, we investigated the role of the gap junction (GJ) protein, connexin 43 (Cx43), in the development of vascular restenosis.
View Article and Find Full Text PDF