Publications by authors named "Jiu-Cheng Zhang"

5-hydroxytryptamine (5-HT) is ubiquitously present in animals and plants, playing a vital regulatory role. SERT, a conserved serotonin reuptake transporter in animals, regulates intracellular and extracellular concentrations of 5-HT. Few studies have reported 5-HT transporters in plants.

View Article and Find Full Text PDF

Ectopic expression of MmCYP1A1 gene from Mus musculus in apple calli and Arabidopsis increased the levels of melatonin and 6-hydroxymelatonin, and improved their stress resistance. Melatonin occurs widely in organisms, playing a key regulatory role. CYP1A1 is a cytochrome P450 monooxygenase, involved in the melatonin metabolism, and is responsible for the synthesis of 6-hydroxymelatonin from melatonin.

View Article and Find Full Text PDF

Ubiquitination is an important post-translational protein modification. Although BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC and TRANSCRIPTION ADAPTOR PUTATIVE ZINC FINGER domain protein 2 (BT2) is involved in many biological processes, its role in apple (Malus domestic) root formation remains unclear. Here, we revealed that MdBT2 inhibits adventitious root (AR) formation through interacting with AUXIN RESPONSE FACTOR8 (MdARF8) and INDOLE-3-ACETIC ACID INDUCIBLE3 (MdIAA3).

View Article and Find Full Text PDF

Nitrate is a major nitrogen resource for plant growth and development and acts as both a crucial nutrient and a signaling molecule for plants; hence, understanding nitrate signaling is important for crop production. Abscisic acid (ABA) has been demonstrated to be involved in nitrate signaling, but the underlying mechanism is largely unknown in apple. In this study, we found that exogenous ABA inhibited the transport of nitrate from roots to shoots in apple, and the transcription of the nitrate transporter MdNRT1.

View Article and Find Full Text PDF

Jasmonate (JA) induces the biosynthesis of anthocyanin and proanthocyanidin. MdMYB9 is essential for modulating the accumulation of both anthocyanin and proanthocyanidin in apple, but the molecular mechanism for induction of anthocyanin and proanthocyanidin biosynthesis by JA is unclear. In this study, we discovered an apple telomere-binding protein (MdTRB1) to be the interacting protein of MdMYB9.

View Article and Find Full Text PDF

Iron (Fe) is an essential element for plant growth, development and metabolism. Due to its lack of solubility and low bioavailability in soil, Fe levels are usually far below the optimum amount for most plants' growth and development. In apple production, excessive use of nitrogen fertilizer may cause iron chlorosis symptoms in the newly growing leaves, but the regulatory mechanisms underlying this phenomenon are unclear.

View Article and Find Full Text PDF

Abscisic acid (ABA) induces chlorophyll degradation and leaf senescence; however, the molecular mechanism remains poorly understood, especially in woody plants. In this study, we found that MdABI5 plays an essential role in the regulation of ABA-triggered leaf senescence in Malus domestica (apple). Through yeast screening, three transcription factors, MdBBX22, MdWRKY40 and MdbZIP44, were found to interact directly with MdABI5 in vitro and in vivo.

View Article and Find Full Text PDF

Drought stress is a severe source of abiotic stress that can affect apple yield and quality, yet the underlying molecular mechanism of the drought stress response and the role of MdBT2 in the process remain unclear. Here, we find that MdBT2 negatively regulates the drought stress response. Both in vivo and in vitro assays indicated that MdBT2 interacted physically with and ubiquitinated MdNAC143, a member of the NAC TF family that is a positive regulator under drought stress.

View Article and Find Full Text PDF

The accumulation of iron (Fe) in the apical meristem is considered as a critical factor involved in limiting the elongation of roots under low phosphate (Pi) conditions. Furthermore, the antagonism between Fe and Pi largely affects the effective utilization of Fe. Although the lack of Pi serves to increase the effectiveness of Fe in rice under both Fe-sufficient and Fe-deficient conditions, the underlying physiological mechanism governing this phenomenon is still unclear.

View Article and Find Full Text PDF

The effect of biochar on the bulk density and aggregate stability of Lou soil was evaluated and compared after biochar was applied for 2 years and 5 years through a field-positioning experiment. Five biochar amounts were applied in this study, as follows:0 t·hm (B), 20 t·hm (B), 40 t·hm (B), 60 t·hm (B), and 80 t·hm (B). The biochar was produced by pyrolysis of stems and branches from fruit trees at the temperature of 450℃ with limited oxygen apply.

View Article and Find Full Text PDF

The immune checkpoint molecules are emerged in the evolution to protect the host from self-attacks by activated T cells. However, cancer cells, as a strategy to survive and expand, can hijack these molecules and mechanisms to suppress T cell-mediated immune responses. Therefore, an idea of blocking the checkpoint molecules to enhance the anti-tumor activities of the host immune system has been developed and applied to the cancer therapy after discovery of the inhibitory T cell co-receptor, cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and further enhanced on the identification of PD-1 and its ligands.

View Article and Find Full Text PDF