Lab-on-a-chip systems seek to leverage microfluidic chips to enable small-scale fluid manipulation, holding significant potential to revolutionize science and industry. However, existing microfluidic chips have been largely designed with static fluid structures for specific single-purpose applications, which lack adaptability and flexibility for diverse applications. Inspired by the general-purpose design strategy of the customizable chip of integrated circuit - field programmable gate array whose hardware can be reconfigured via software programming for multifunctionality after manufacturing, a conceptual-new reconfigurable microfluidic chip - field programmable topographic morphing array (FPTMA) is devised with exceptional structural reconfiguration, field programmability, and function scalability for general-purpose lab-on-a-chip systems that beyond the reach of current state-of-art lab-on-chip systems.
View Article and Find Full Text PDFArtificial muscles that can convert electrical energy into mechanical energy promise broad scientific and technological applications. However, existing electro-driven artificial muscles have been plagued with problems that hinder their practical applications: large electro-mechanical attenuation during deformation, high-driving voltages, small actuation strain, and low power density. Here, we design and create novel electro-thermal-driven artificial muscles rationally composited by hierarchically structured carbon nanotube (HS-CNT) networks and liquid crystal elastomers (LCEs), which possess adaptive sandwiched nanotube networks with angulated-scissor-like microstructures, thus effectively addressing above problems.
View Article and Find Full Text PDFBiological tubular actuators show diverse deformations, which allow for sophisticated deformations with well-defined degrees of freedom (DOF). Nonetheless, synthetic active tubular soft actuators largely only exhibit few simple deformations with limited and undesignable DOF. Inspired by 3D fibrous architectures of tubular muscular hydrostats, we devised conceptually new helical-artificial fibrous muscle structured tubular soft actuators (HAFMS-TSAs) with locally tunable molecular orientations, materials, mechanics, and actuation via a modular fabrication platform using a programmable filament winding technique.
View Article and Find Full Text PDFLeveraging liquid crystal elastomers (LCEs) to realize scalable fabrication of high-performing fibrous artificial muscles is of particular interest because these active soft materials can provide large, reversible, programmable deformations upon environmental stimuli. High-performing fibrous LCEs require the used processing technology to enable shaping LCEs into micro-scale fine fibers as thin as possible while achieving macroscopic LC orientation, which however remains a daunting challenge. Here, a bioinspired spinning technology is reported that allows for continuous, high-speed production (fabrication speed up to 8400 m h ) of thin and aligned LCE microfibers combined with rapid deformation (actuation strain rate up to 810% s ), powerful actuation (actuation stress up to 5.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Biological organisms (e.g., batoid fish, etc.
View Article and Find Full Text PDFSelf-oscillating systems that enable autonomous, continuous motions driven by an unchanging, constant stimulus would have significant applications in intelligent machines, advanced robotics, and biomedical devices. Despite efforts to gain self-oscillations have been made through artificial systems using responsive soft materials of gels or liquid crystal polymers, these systems are plagued with problems that restrict their practical applicability: few available oscillation modes due to limited degrees of freedom, inability to control the evolution between different modes, and failure under loading. Here we create a phototunable self-oscillating system that possesses a broad range of oscillation modes, controllable evolution between diverse modes, and loading capability.
View Article and Find Full Text PDFRealizing programmable assembly and reconfiguration of small objects holds promise for technologically-significant applications in such fields as micromechanical systems, biomedical devices, and metamaterials. Although capillary forces have been successfully explored to assemble objects with specific shapes into ordered structures on the liquid surface, reconfiguring these assembled structures on demand remains a challenge. Here we report a strategy, bioinspired by Anurida maritima, to actively reconfigure assembled structures with well-defined selectivity, directionality, robustness, and restorability.
View Article and Find Full Text PDFMultiple-stimuli responsive soft actuators with tunable initial shapes would have substantial potential in broad technological applications, ranging from advanced sensors, smart robots to biomedical devices. However, existing soft actuators are often limited to single initial shape and are unable to reversibly reconfigure into desirable shapes, which severely restricts the multifunctions that can be integrated into one actuator. Here, a novel reconfigurable supramolecular polymer/polyethylene terephthalate (PET) bilayer actuator exhibiting multiple-stimuli responses is presented.
View Article and Find Full Text PDFPhotodeformable liquid crystal polymers (LCPs) that adapt their shapes in response to light have aroused a dramatic growth of interest in the past decades, since light as a stimulus enables the remote control and diverse deformations of materials. This review focuses on the growing research on photodeformable LCPs, including their basic actuation mechanisms, the various deformation modes, the newly designed molecular structures, and the improvement of processing techniques. Special attention is devoted to the novel molecular structures of LCPs, which allow for easy processing and alignment.
View Article and Find Full Text PDFThe manipulation of small amounts of liquids has applications ranging from biomedical devices to liquid transfer. Direct light-driven manipulation of liquids, especially when triggered by light-induced capillary forces, is of particular interest because light can provide contactless spatial and temporal control. However, existing light-driven technologies suffer from an inherent limitation in that liquid motion is strongly resisted by the effect of contact-line pinning.
View Article and Find Full Text PDFPowering and communication with micro robots to enable complex functions is a long-standing challenge as the size of robots continues to shrink. Physical connection of wires or components needed for wireless communication are complex and limited by the size of electronic and energy storage devices, making miniaturization of robots difficult. To explore an alternative solution, we designed and fabricated a micro soft swimming robot with both powering and controlling functions provided by remote light, which does not carry any electronic devices and batteries.
View Article and Find Full Text PDFCross-linked azobenzene liquid-crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.
View Article and Find Full Text PDF