Publications by authors named "Jit Ern Chen"

Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.

View Article and Find Full Text PDF

Coral reef research has predominantly focused on the effect of temperature on the breakdown of coral-dinoflagellate symbioses. However, less is known about how increasing temperature affects the establishment of new coral-dinoflagellate associations. Inter-partner specificity and environment-dependent colonization are two constraints proposed to limit the acquisition of more heat tolerant symbionts.

View Article and Find Full Text PDF

Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co-evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner.

View Article and Find Full Text PDF
Article Synopsis
  • Coral reefs are vital and diverse marine ecosystems, with dinoflagellate algae playing a key role by living symbiotically with coral.
  • Efforts to study the relationship between these algae and coral were limited due to a lack of genetic transformation technologies for dinoflagellates.
  • Researchers successfully introduced new genetic material into the dinoflagellate chloroplast genome and showed that the modification is stable and heritable over a year of cultivation, marking a significant advancement in the field.
View Article and Find Full Text PDF

Modern transformation and genome editing techniques have shown great success across a broad variety of organisms. However, no study of successfully applied genome editing has been reported in a dinoflagellate despite the first genetic transformation of Symbiodinium being published about 20 years ago. Using an array of different available transformation techniques, we attempted to transform Symbiodinium microadriaticum (CCMP2467), a dinoflagellate symbiont of reef-building corals, with the view to performing subsequent CRISPR-Cas9 mediated genome editing.

View Article and Find Full Text PDF

Rising sea surface temperature is the main cause of global coral reef decline. Abnormally high temperatures trigger the breakdown of the symbiotic association between corals and their photosynthetic symbionts in the genus Symbiodinium. Higher genetic variation resulting from shorter generation times has previously been proposed to provide increased adaptability to Symbiodinium compared to the host.

View Article and Find Full Text PDF

Triacylglycerols (TAGs) from algae are considered to be a potentially viable source of biodiesel and thereby renewable energy, but at the moment very little is known about the biosynthetic pathway in these organisms. Here we compare what is currently known in eukaryotic algal species, in particular the characteristics of algal diacylglycerol acyltransferase (DGAT), the last enzyme of de novo TAG biosynthesis. Several studies in plants and mammals have shown that there are two DGAT isoforms, DGAT1 and DGAT2, which catalyse the same reaction but have no clear sequence similarities.

View Article and Find Full Text PDF