Background And Aim: Differentiating between Crohn's disease (CD) and gastrointestinal tuberculosis (GITB) is challenging. We aimed to evaluate the clinical applicability of an artificial intelligence (AI) model for this purpose.
Methods: The AI model was developed and assessed using an internal dataset comprising 1,132 colonoscopy images of CD and 1,045 colonoscopy images of GITB at a tertiary referral center.
Objective: : To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN).
Methods: : A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me).