Publications by authors named "Jisu Woo"

Colorectal cancer (CRC) remains one of the most formidable challenges in the global health arena. To address this challenge, extensive research has been directed toward developing targeted drug delivery systems (DDS). Cell-derived vesicles (CDV), which mirror the lipid bilayer structure of cell membranes, have garnered tremendous attention as ideal materials for DDS owing to their scalability in production and high biocompatibility.

View Article and Find Full Text PDF

Neutrophilic inflammation is a prominent feature of chronic obstructive pulmonary disease (COPD). Developmental endothelial locus-1 (Del-1) has been reported to limit excessive neutrophilic inflammation by inhibiting neutrophil adhesion to the vascular endothelial cells. However, the effects of Del-1 in COPD are not known.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents a new detection system for cancer biomarkers using transcription isothermal amplification paired with tetrahedral DNA nanostructures (TDN).
  • TDN improves the effectiveness of various amplification methods by positioning DNA probes close together, particularly excelling in a system called STAR that identifies non-coding RNAs like microRNAs and lncRNAs.
  • The system allows for multiplex detection by creating unique RNA aptamers with distinct fluorescence signals, showing high sensitivity and selectivity in both cell lines and real clinical samples.
View Article and Find Full Text PDF

China and South Korea are the most polluted countries in East Asia due to significant urbanization and extensive industrial activities. As neighboring countries, collaborative management plans to maximize public health in both countries can be helpful in reducing transboundary air pollution. To support such planning, PM inorganic and organic species were determined in simultaneously collected PM integrated filters.

View Article and Find Full Text PDF

Background: Proteomics and genomics studies have contributed to understanding the pathogenesis of chronic obstructive pulmonary disease (COPD), but previous studies have limitations. Here, using a machine learning (ML) algorithm, we attempted to identify pathways in cultured bronchial epithelial cells of COPD patients that were significantly affected when the cells were exposed to a cigarette smoke extract (CSE).

Methods: Small airway epithelial cells were collected from patients with COPD and those without COPD who underwent bronchoscopy.

View Article and Find Full Text PDF

Background: Macroautophagy plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD), but the role of chaperone-mediated autophagy (CMA) has not been investigated. We investigated if and how CMA is involved in the pathogenesis of COPD.

Methods: We measured the level of lysosome-associated membrane protein-2A (LAMP-2A), which is a critical component of CMA that functions as a receptor for cytosolic substrate proteins, in total lung tissues and primary human bronchial epithelial cells (HBECs) from healthy never smokers, smokers, and COPD patients.

View Article and Find Full Text PDF

Inflammation, oxidative stress, and apoptosis are thought to be important causes of chronic obstructive pulmonary disease (COPD). We investigated the effect of YPL-001 (under phase 2a study, ClinicalTrials.gov identifier NCT02272634), a drug derived from var.

View Article and Find Full Text PDF

Cereblon (CRBN) has been shown to play an essential role in regulating inflammatory response and endoplasmic reticulum stress, thus mediating the development of various diseases. However, little is known about the roles of CRBN in chronic obstructive pulmonary disease (COPD) pathogenesis. We found that the protein levels of CRBN in lung homogenates from patients with COPD were lower than those from never smokers and smokers.

View Article and Find Full Text PDF

Rapid and selective sensing of KRAS gene mutation which plays a crucial role in the development of colorectal, pancreatic, and lung cancers is of great significance in the early diagnosis of cancers. In the current study, we developed a simple electrochemical biosensor by differential pulse voltammetry technique for the specific detection of KRAS mutation that uses the mismatch-specific cleavage activity of T7-Endonuclease I (T7EI) coupled with horseradish peroxidase (HRP) to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) substrate in the presence of hydrogen peroxide (HO). In addition, we synthesized the nanocomposite composed of multi-walled carbon nanotube/chitosan-ionic liquid/gold nanoparticles (MWCNT/Chit-IL/AuNPs) on screen-printed carbon electrode surface to increase the electrode surface area and electrochemical signal.

View Article and Find Full Text PDF

Background: Despite the high disease burden of chronic obstructive pulmonary disease (COPD) and risk of acute COPD exacerbation, few COPD biomarkers are available. As developmental endothelial locus-1 (DEL-1) has been proposed to possess beneficial effects, including anti-inflammatory effects, we hypothesized that DEL-1 could be a blood biomarker for COPD.

Objective: To elucidate the role of plasma DEL-1 as a biomarker of COPD in terms of pathogenesis and for predicting acute exacerbation.

View Article and Find Full Text PDF

The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed a simple and reproducible strategy, termed three-way junction (3WJ)-induced transcription amplification, to detect target nucleic acids by rationally combining 3WJ-induced isothermal amplification with a light-up RNA aptamer.

View Article and Find Full Text PDF

Lung epithelial cells serve as the first line of defense against various inhaled pollutant particles. To investigate the adverse health effects of organic components of fine particulate matter (PM) collected in Seoul, South Korea, we selected 12 PM samples from May 2016 to January 2017 and evaluated the effects of organic compounds of PM on inflammation, cellular aging, and macroautophagy in human lung epithelial cells isolated directly from healthy donors. Organic extracts of PM specifically induced neutrophilic chemokine and interleukin-8 expression via extracellular signal-regulated kinase activation.

View Article and Find Full Text PDF

Patients with chronic obstructive pulmonary disease (COPD) are susceptible to infection owing to the impaired immune function of alveolar macrophages. This is presumed to be caused, at least partially, by cigarette smoke (CS), which is a major risk factor for COPD. Although CS has been reported to inhibit Toll-like receptor (TLR) function and phagocytosis in macrophages, the molecular mechanism of CS-mediated impairment of macrophage immune function has not been completely elucidated.

View Article and Find Full Text PDF

Inflammation, oxidative stress, and protease-antiprotease imbalance have been suggested to be a pathogenic triad in chronic obstructive pulmonary disease (COPD). However, it is not clear how proteases interact with components of inflammatory pathways. Therefore, this study aimed to evaluate the effect of neutrophil elastase (NE) on lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) production and determine the molecular mechanism in human bronchial epithelial cells (HBECs).

View Article and Find Full Text PDF

Pulmonary fibrosis is a progressive and lethal lung disease characterized by the proliferation and differentiation of lung fibroblasts and the accumulation of extracellular matrices. Since pulmonary fibrosis was reported to be associated with adenosine monophosphate-activated protein kinase (AMPK) activation, which is negatively regulated by cereblon (CRBN), we aimed to determine whether CRBN is involved in the development of pulmonary fibrosis. Therefore, we evaluated the role of CRBN in bleomycin (BLM)-induced pulmonary fibrosis in mice and in transforming growth factor-beta 1 (TGF-β1)-induced differentiation of human lung fibroblasts.

View Article and Find Full Text PDF
Article Synopsis
  • A new 12 bp promoter was discovered that enhances transcription efficiency compared to the standard 20 bp promoter, making it more suitable for diagnostic uses due to its smaller size.
  • This promoter successfully created various light-up RNA aptamers through transcription and enabled the analysis of RNase H activity with a detection limit of 0.009 U mL, outperforming previous methods.
  • The researchers suggest that this novel promoter could be essential for improving diagnostic applications.
View Article and Find Full Text PDF

Background And Objective: Alveolar macrophages of patients with COPD display impaired cytokine release and diminished phagocytosis. COPD exacerbations exhibit immune dysfunction towards the respiratory pathogens. CS and CSE were reported to aggravate bacterial infections in COPD patients.

View Article and Find Full Text PDF

IκB, a cytoplasmic inhibitor of nuclear factor-κB (NF-κB), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces IκBα degradation via an alternative pathway, lysosome, which results in NF-κB activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced IκBα degradation is necessary.

View Article and Find Full Text PDF

Background: The function of preadipocytes in the progression of early stage breast cancer has not been fully elucidated at the molecular level. To delineate the role of preadipocytes in breast cancer progression, we investigated the cross-talk between human breast ductal carcinoma in situ (DCIS) cells and preadipocytes with both an in vitro culture and xenograft tumor model.

Methods: GFP or RFP was transduced into human DCIS cell line MCF10DCIS.

View Article and Find Full Text PDF

Adiponectin, a hormone produced by adipose tissue, is very abundant in plasma, and its anti- and pro-inflammatory effects are reported. However, the mechanisms of these pro- and anti-inflammatory effects are not fully defined. Herein, we evaluated the dual inflammatory response mechanism of adiponectin in macrophages.

View Article and Find Full Text PDF

Although inflammation, oxidative stress, and protease-antiprotease imbalance have been referred to as a pathogenic triad in chronic obstructive pulmonary disease (COPD), little is known about how they interact. The objectives of this study were to elucidate the effect of cigarette smoke extract (CSE) on the neutrophil elastase (NE)-induced inflammatory response and its molecular mechanism in bronchial epithelial cells. We observed that NE activated extracellular signal-regulated kinase (ERK) and induced IL-8 production.

View Article and Find Full Text PDF

Crosstalk between breast cancer and macrophages has potential implications for tumor metastasis. This study investigates macrophage polarization induced by triple-negative breast cancer (TNBC) cell-derived exosomes that promote lymph node (LN) metastasis in orthotopic TNBC models. The MDA-MB-231 cancer cell line expressing the exosomal CD63-red fluorescence (RFP) fusion protein was generated to noninvasively visualize exosome transfer into cancer cells and macrophages.

View Article and Find Full Text PDF

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine mainly derived from T helper 17 cells and is known to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) has been considered as a primary risk factor of COPD. However, the interaction between CS and IL-17A and the underlying molecular mechanisms have not been clarified.

View Article and Find Full Text PDF

Current EGFR-targeted therapy for triple negative breast cancer (TNBC) has produced disappointing results. A rational therapeutic strategy to improve EGFR-targeted treatment for TNBC is therefore needed. In this study we evaluated the feasibility of treating TNBC using photoacoustic imaging (PAI)-guided near-infrared photothermal therapy (NIR-PTT) with anti-EGFR-conjugated gold nanorods (anti-EGFR-GN).

View Article and Find Full Text PDF

The microRNA-200 (miR-200) family is associated with tumor metastasis and poor patient prognosis. We found that miR-200c/141 cluster overexpression upregulated SerpinB2 in the MDA-MB-231 triple-negative (TN) breast cancer cell line. We observed transcription factor (c-Jun, c-Fos, and FosB) upregulation, nuclear localization of c-Jun, and increased SerpinB2 promoter-directed chloramphenicol acetyltransferase activity in miR-200c/141 cluster-overexpressing cells relative to controls.

View Article and Find Full Text PDF