We previously reported a first set of hybrid topoisomerase II (topoII) poisons whose chemical core merges key pharmacophoric elements of etoposide and merbarone, which are two well-known topoII blockers. Here, we report on the expansion of this hybrid molecular scaffold and present 16 more hybrid derivatives that have been designed, synthesized, and characterized for their ability to block topoII and for their overall drug-like profile. Some of these compounds act as topoII poison and exhibit good solubility, metabolic (microsomal) stability, and promising cytotoxicity in three cancer cell lines (DU145, HeLa, A549).
View Article and Find Full Text PDFHuman type II topoisomerases (TopoII) are essential for controlling DNA topology within the cell. For this reason, there are a number of TopoII-targeted anticancer drugs that act by inducing DNA cleavage mediated by both TopoII isoforms (TopoIIα and TopoIIβ) in cells. However, recent studies suggest that specific poisoning of TopoIIα may be a safer strategy for treating cancer.
View Article and Find Full Text PDFEtoposide is an anticancer drug that acts by inducing topoisomerase II-mediated DNA cleavage. Despite its wide use, etoposide is associated with some very serious side-effects including the development of treatment-related acute myelogenous leukemias. Etoposide targets both human topoisomerase IIα and IIβ.
View Article and Find Full Text PDFDensity Functional Tight Binding (DFTB) models are two to three orders of magnitude faster than ab initio and Density Functional Theory (DFT) methods and therefore are particularly attractive in applications to large molecules and condensed phase systems. To establish the applicability of DFTB models to general chemical reactions, we conduct benchmark calculations for barrier heights and reaction energetics of organic molecules using existing databases and several new ones compiled in this study. Structures for the transition states and stable species have been fully optimized at the DFTB level, making it possible to characterize the reliability of DFTB models in a more thorough fashion compared to conducting single point energy calculations as done in previous benchmark studies.
View Article and Find Full Text PDFAn artificial nucleoside surrogate with 1H-imidazo[4,5-f][1,10]phenanthroline (P) acting as an aglycone has been introduced into DNA oligonucleotide duplexes. This nucleoside surrogate can act as a bidentate ligand, and so is useful in the context of metal-mediated base pairs. Several duplexes involving a hetero base pair with an imidazole nucleoside have been investigated.
View Article and Find Full Text PDF