IEEE/ACM Trans Comput Biol Bioinform
July 2020
The important role of angiogenesis in cancer development has driven many researchers to investigate the prospects of noninvasive cancer diagnosis based on the technology of contrast-enhanced ultrasound (CEUS) imaging. This paper presents a deep learning framework to detect prostate cancer in the sequential CEUS images. The proposed method uniformly extracts features from both the spatial and the temporal dimensions by performing three-dimensional convolution operations, which captures the dynamic information of the perfusion process encoded in multiple adjacent frames for prostate cancer detection.
View Article and Find Full Text PDFIn this paper, a noise enhanced binary hypothesis-testing problem was studied for a variable detector under certain constraints in which the detection probability can be increased and the false-alarm probability can be decreased simultaneously. According to the constraints, three alternative cases are proposed, the first two cases concerned minimization of the false-alarm probability and maximization of the detection probability without deterioration of one by the other, respectively, and the third case was achieved by a randomization of two optimal noise enhanced solutions obtained in the first two limit cases. Furthermore, the noise enhanced solutions that satisfy the three cases were determined whether randomization between different detectors was allowed or not.
View Article and Find Full Text PDF