The gene family encodes a typical transcription factor containing a noncanonical Leucine (Leu-)-zipper motif that plays an essential role in regulating plant growth and development, as well as responding to various stresses. However, limited information on the gene family is available in the case of the Gramineae crops. Here, 125 genes from nine Gramineae crops species were phylogenetically classified into four clades using bioinformatics analysis.
View Article and Find Full Text PDFBackground: Mitochondria play critical roles in plant growth, development and stress tolerance. Numerous researchers have carried out studies on the plant mitochondrial genome structure, mitochondrial metabolism and nuclear-cytoplasmic interactions. However, classical plant mitochondria extraction methods are time-consuming and consist of a complicated ultracentrifugation procedure with expensive reagents.
View Article and Find Full Text PDFIn land plants, the pentatricopeptide repeat (PPR) proteins form a large family involved in post-transcriptional processing of RNA in mitochondria and chloroplasts, which is critical for plant development and evolutionary adaption. Although studies showed a number of PPR proteins generally influence the editing of organellar genes, few of them were characterized in detail in rice. Here, we report a PLS-E subclass PPR protein in rice, PPR756, loss of function of which led to the abolishment of RNA editing events among three mitochondrial genes including , , and .
View Article and Find Full Text PDFMarker-based prediction holds great promise for improving current plant and animal breeding efficiencies. However, the predictabilities of complex traits are always severely affected by negative factors, including distant relatedness, environmental discrepancies, unknown population structures, and indeterminate numbers of predictive variables. In this study, we utilised two independent F hybrid populations in the years 2012 and 2015 to predict rice thousand grain weight (TGW) using parental untargeted metabolite profiles with a partial least squares regression method.
View Article and Find Full Text PDFThe pentatricopeptide repeat (PPR) protein family is a large family characterized by tandem arrays of a degenerate 35-amino-acid motif whose members function as important regulators of organelle gene expression at the post-transcriptional level. Despite the roles of PPRs in RNA editing in organelles, their editing activities and the underlying mechanism remain obscure. Here, we show that a novel DYW motif-containing PPR protein, PPS1, is associated with five conserved RNA-editing sites of nad3 located in close proximity to each other in mitochondria, all of which involve conversion from proline to leucine in rice.
View Article and Find Full Text PDFIn flowering plants, various RNA editing events occur in the mitochondria and chloroplasts as part of post-transcriptional processes. Although several pentatricopeptide repeat (PPR) proteins and multiple organellar RNA editing factors (MORFs) have been identified as RNA editing factors, the underlying mechanism of PPRs and the cooperation among these proteins are still obscure. Here, we identified a rice dual-localized PPR protein, OsPGL1.
View Article and Find Full Text PDF