Understanding the interactions between nanoparticles and organophosphates is the key to developing cost-effective colorimetric pesticide detection. We have studied the interaction between three different organophosphates containing the P[double bond, length as m-dash]S group and borohydride stabilized silver nanoparticles. Three different organophosphates, namely phorate, chlorpyrifos, and malathion, have been used.
View Article and Find Full Text PDFThe last few decades witnessed a remarkable advancement in the field of molecular anion receptors. A variety of anion binding motifs have been discovered, and large number of designer molecular anion receptors with high selectivity are being reported. However, anion detection in an aqueous medium is still a formidable challenge as evident from only a miniscule of synthetic systems available in the literature.
View Article and Find Full Text PDFDendrimers have attracted immense interest in science and technology due to their unique chemical structure that offers a myriad of opportunities for researchers. Dendritic design allows us to present peptides in a branched three-dimensional fashion that eventually leads to a globular shape, thus mimicking globular proteins. Peptide dendrimers, unlike other classes of dendrimers, have immense applications in biomedical research due to their biological origin.
View Article and Find Full Text PDFCurrent treatment modalities for cartilage regeneration often result in the production of fibrous-type cartilage tissue at the defect site, which has inferior mechanical properties as compared to native hyaline cartilage. Further, effective treatments are not available at present, for preventing age-related as well as disease-related hypertrophic development of chondrocytes. In the present study, we designed and synthesized three sets of glutamic acid-based dendritic peptides, differing in degree of lipidation as well as branching.
View Article and Find Full Text PDFObjective: Regeneration of periodontal defects is challenging as it necessitates the formation of complex tissue structure with cementum, periodontal ligament, and alveolar bone. Rather than the conventional barrier membranes, scaffolds mimicking extracellular matrix (ECM) can achieve faster healing as they promote migration, adhesion, and differentiation of native progenitor cells. This work explores the possibility of a functional osteogenic matrix based on self-assembling peptide appended dendritic polydiacetylene in regenerating diseased periodontia.
View Article and Find Full Text PDF