Publications by authors named "Jiseok Kim"

Ginseng () renowned as the king of medicinal plants. Ginseng grows slowly under shade conditions, requiring at least 4 years to produce a limited number of seeds. Molecular breeding of ginseng faces challenges due to its the tetraploid genome and the absence of an efficient molecular marker system.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how interfacial ion insertion affects the performance of lithium-ion batteries, particularly in two-dimensional layered-oxide particles.
  • The research reveals that the varying insertion rates across channels are influenced by unclear crystal orientation and lithium diffusion lengths, making it challenging to understand the activation of insertion channels.
  • Using a specially fabricated single-crystal thin film, the researchers found heterogeneity in lithium concentration during insertion, which worsens with higher current density, offering essential insights for improving battery design and longevity.
View Article and Find Full Text PDF

The integration of bio-based materials into triboelectric nanogenerators (TENGs) for energy harvesting from human body motions has sparked considerable research attention. Here, a silanated cellulose nanofibril (SCNF) aerogel is reported for structurally reliable TENGs and reversely compressible Taekwondo scoring sensors under repeated impacts. The preparation of the aerogel involves silanizing cellulose nanofibers (CNFs) with vinyltrimethoxysilane (VTMS), following by freeze-drying and post-heating treatment.

View Article and Find Full Text PDF

In an era marked by increasing environmental challenges affecting human well-being, traditional acoustic materials struggle to effectively handle the diverse and multi-frequency nature of harmful environmental noises. This has spurred a demand for innovative acoustic metamaterial solutions by utilizing sustainable design strategies. This research introduces tunable Schwarz metamaterial capable of transforming into a soft meta-foam to solve the complex problems of varying environmental noises.

View Article and Find Full Text PDF

The rise of , a multidrug-resistant fungal pathogen, across more than 40 countries, has signaled an alarming threat to global health due to its significant resistance to existing antifungal therapies. Characterized by its rapid spread and robust drug resistance, presents a critical challenge in managing infections, particularly in healthcare settings. With research on its biological traits and genetic basis of virulence and resistance still in the early stages, there is a pressing need for a concerted effort to understand and counteract this pathogen.

View Article and Find Full Text PDF

MXenes are highly versatile and conductive 2D materials that can significantly enhance the triboelectric properties of polymer nanocomposites. Despite the growing interest in the tunable chemistry of MXenes for energy applications, the effect of their chemical composition on triboelectric power generation has yet to be thoroughly studied. Here, we investigate the impact of the chemical composition of MXenes, specifically the TiCNT carbonitride vs the most studied carbide, TiCT, on their interactions with sodium alginate biopolymer and, ultimately, the performance of a triboelectric nanogenerator (TENG) device.

View Article and Find Full Text PDF

The advancement of active electrode materials is essential to meet the demand for multifaceted soft robotic interactions. In this study, a new type of porous carbonaceous sphere (PCS) for a multimodal soft actuator capable of both magnetoactive and electro-ionic responses is reported. The PCS, derived from the simultaneous oxidative and reductive breakdown of specially designed cobalt-based metal-organic frameworks (Co-MOFs) with varying metal-to-ligand ratios, exhibits a high specific surface area of 529 m g and a saturated magnetization of 142.

View Article and Find Full Text PDF

We performed a large-scale flow cytometric analysis to determine whether M1 macrophage (M1Ø) and M2 macrophage (M2Ø) polarization in white adipose tissue (WAT) was altered immediately after exercise. Additionally, we comprehensively investigated the effects of obesity, exercise intensity, and recovery time on macrophage polarization in WAT. A single exercise bout of various intensities (ND, non-exercise control; -LIE, low-intensity exercise; -MIE, mid-intensity exercise; -HIE, high-intensity exercise) was performed by normal mice (ND) and obese mice (HFD).

View Article and Find Full Text PDF

Considerable research has been conducted on the application of functional nano-fillers to enhance the power generation capabilities of triboelectric nanogenerators (TENGs). However, these additives often exhibit a decrease in output power at higher concentration. Here, a Janus cobalt metal-organic framework-SEBS (JCMS) membrane is reported as a dual-purpose dielectric layer capable of efficiently capturing and blocking charges for high-performance TENGs.

View Article and Find Full Text PDF

In this study, composite materials composed of graphene oxide (GO) synthesized by a modified Hummers' method and silver nanowires (AgNWs) synthesized by a modified polyol method were prepared. The prepared composites were subjected to sulfidation under the influence of HS gas. Structural changes in the samples were evaluated using X-ray diffraction (XRD).

View Article and Find Full Text PDF

Background: The involvement of monoacylglycerol O-acyltransferase 1 (MOGAT1) in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) has been recognized. While exercise is recommended for the improvement of obesity and MASLD, the impact of exercise intensity remains unclear. This study aimed to examine the influence of exercise intensity on MOGAT1 expression in high-fat diet (HFD)-induced obese mice with MASLD.

View Article and Find Full Text PDF

Purpose: For successful delivery of a solid vaccine formulation into the skin using microneedles, the solubility of an adjuvant should be considered because the decrease in the dissolution rate by the addition of adjuvant decreases the delivery efficiency of the vaccine.

Methods: In this study, cholera toxin A subunit 1 (CTA1) was examined as an adjuvant to Hepatitis B vaccine (HBV) microneedles because of its good water solubility, improved safety, and positive effect as shown in intramuscular administration of a liquid vaccine.

Results: All solid formulations with CTA 1 dissolved in in vivo mouse skin within 30 min, and they were successfully delivered into the skin.

View Article and Find Full Text PDF

The surge of multidrug-resistant fungal pathogens, especially , poses significant threats to global public health. exhibits resistance to multiple antifungal drugs, leading to major outbreaks and a high mortality rate. With an urgent call for innovative therapeutic strategies, this study focused on the regulation and pathobiological significance of secreted aspartyl proteinases (SAPs) in , as these enzymes play pivotal roles in the virulence of some fungal species.

View Article and Find Full Text PDF

, a multidrug-resistant fungal pathogen, significantly threatens global public health. Recent studies have identified melanin production, a key virulence factor in many pathogenic fungi that protects against external threats like reactive oxygen species, in . However, the melanin regulation mechanism remains elusive.

View Article and Find Full Text PDF

Wearable haptic interfaces prioritize user comfort, but also value the ability to provide diverse feedback patterns for immersive interactions with the virtual or augmented reality. Here, to provide both comfort and diverse tactile feedback, an easy-to-wear and multimodal wearable haptic auxetic fabric (WHAF) is prepared by knotting shape-memory alloy wires into an auxetic-structured fabric. This unique meta-design allows the WHAF to completely expand and contract in 3D, providing superior size-fitting and shape-fitting capabilities.

View Article and Find Full Text PDF

The emergence of multidrug-resistant fungal pathogens is a significant concern for global public health. poses a considerable threat as a multidrug-resistant fungal pathogen. Our recent study revealed that the adenylyl cyclase Cyr1 and protein kinase A (PKA) pathways play distinct and redundant roles in drug resistance and pathogenicity of .

View Article and Find Full Text PDF

Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing.

View Article and Find Full Text PDF

Exercise can afford several benefits to combat mood disorders in both rodents and humans. Engagement in various physical activities upregulates levels of neurotrophic factors in several brain regions and improves mental health. However, the type of exercise that regulates mood and the underlying mechanisms in the brain remain elusive.

View Article and Find Full Text PDF

Chimeric plants composed of green and albino tissues have great ornamental value. To unveil the functional genes responsible for albino phenotypes in chimeric plants, we inspected the complete plastid genomes (plastomes) in green and albino leaf tissues from 23 ornamental chimeric plants belonging to 20 species, including monocots, dicots, and gymnosperms. In nine chimeric plants, plastomes were identical between green and albino tissues.

View Article and Find Full Text PDF

Background: This study aimed to analyze the effects of walking and resistance exercises on bone structure, bone mineral density (BMD), and skeletal muscle mass. We used data from the fourth Korean National Health and Nutrition Examination Survey (KNHANES).

Methods: A total of 3,477 participants aged ≥19 years underwent hip structural analysis (HSA), BMD, and skeletal muscle index (SMI).

View Article and Find Full Text PDF

The climbing plant (Turcz.) Liede & Khanum is widely distributed throughout Korea and Northeast Asia as a member of the Apocynaceae family. Although this plant has a high value in medicinal and industrial purposes, genetic research on this plant is insufficient.

View Article and Find Full Text PDF

The polysaccharide capsule of Cryptococcus neoformans-an opportunistic basidiomycete pathogen and the major etiological agent of fungal meningoencephalitis-is a key virulence factor that prevents its phagocytosis by host innate immune cells. However, the complex signaling networks for their synthesis and attachment remain elusive. In this study, we systematically analyzed capsule biosynthesis and signaling networks using C.

View Article and Find Full Text PDF

Aquaporins (AQPs) are water channels in the cell membrane that regulate osmosis in response to rapid changes in intracellular and extracellular fluid concentration caused by extrinsic factors. While there are so many studies on the association of AQPs with muscular atrophy, sarcopenia, and Duchenne muscular dystrophy (DMD), the expression of AQP has not been verified in naturally aging mice or humans. Notably, due to the characteristics of AQPs, the difference in function cannot be evaluated without extrinsic factors such as acute water restriction.

View Article and Find Full Text PDF

Halyomorpha halys (Hemiptera: Pentatomidae), an important agricultural and nuisance pest, is highly invasive with peculiar hiding behavior in human-made structures for overwintering. To evaluate the contamination risk of overwintering H. halys in non-agricultural export goods, we conducted a two-year field survey in Republic of Korea to locate overwintering H.

View Article and Find Full Text PDF

There has been an increasing awareness of sarcopenia, which is characterized by a concomitant decrease in skeletal muscle mass and quality due to aging. Resistance exercise is considered more effective than aerobic exercise in terms of therapeutic exercise. To confirm the effect of long-term aerobic exercise in preventing sarcopenia, we evaluated the skeletal muscle mass, quality, and angiogenic capacity of super-aged mice that had undergone lifelong spontaneous exercise (LSE) through various experiments.

View Article and Find Full Text PDF