Publications by authors named "Jisen Dai"

We have developed a unique delivery system of growth factors using collagen membranes (CMs) to induce bone regeneration. We hypothesized that fibroblast growth factor18 (FGF-18), a pleiotropic protein that stimulates proliferation in several tissues, can be a good candidate to use our delivery system for bone regeneration. Cell viability, cell proliferation, alkaline phosphatase activity, mineralization, and marker gene expression of osteoblastic differentiation were evaluated after mouse preosteoblasts were cultured with a CM containing FGF-18, a CM containing platelet-derived growth factor, or a CM alone.

View Article and Find Full Text PDF

Virus-mediated gene delivery shows promise for the treatment of chronic pain. However, viral vectors have cytotoxicity. To avoid toxicities and limitations of virus-mediated gene delivery, we developed a novel nonviral hybrid vector: HIV-1 Tat peptide sequence modified with histidine and cysteine residues combined with a cationic lipid.

View Article and Find Full Text PDF

Stromal cell-derived factor-1 (SDF-1) is a cytokine that is important in stem and progenitor cell recruitment in tissue repair after injury. Regenerative procedures using collagen membranes (CMs) are presently well established in periodontal and implant dentistry. The objective of this study is to test the subsequent effects of the released SDF-1 from a CM on bone regeneration compared to platelet-derived growth factor (PDGF) in vitro and in vivo.

View Article and Find Full Text PDF

A lipoproteoplex comprised of an engineered supercharged coiled-coil protein (CSP) bearing multiple arginines and the cationic lipid formulation FuGENE HD (FG) was developed for effective condensation and delivery of nucleic acids. The CSP was able to maintain helical structure and self-assembly properties while exhibiting binding to plasmid DNA. The ternary CSP·DNA(8:1)·FG lipoproteoplex complex demonstrated enhanced transfection of β-galactosidase DNA into MC3T3-E1 mouse preosteoblasts.

View Article and Find Full Text PDF

A combination of modified HIV-1 Tat (mTat) peptide and cationic lipids, FuGENE HD (FH), dramatically enhanced transfection efficiency across a range of cell lines when compared to mTat or FH alone (Biomaterials 35:1705-1715 2014). The efficiency of this Tat peptide combination was significantly higher than many commercial non-viral vectors. In this present study, we tested the feasibility of this non-viral vector, mTat/FH, in vivo using plasmid DNA encoding a luciferase gene.

View Article and Find Full Text PDF
Article Synopsis
  • Regenerative procedures using barrier membranes are commonly used in periodontal and endodontic surgeries to enhance bone regeneration.
  • This study focused on comparing the effects of platelet-derived growth factor (PDGF) and growth/differentiation factor 5 (GDF-5) released from collagen membranes on bone regeneration in both lab (in vitro) and test subjects (in vivo).
  • Findings indicated that collagen membranes with GDF-5 significantly improved cell proliferation and bone regeneration more than those with PDGF, suggesting GDF-5 could enhance clinical treatments for bone defects related to dental procedures.
View Article and Find Full Text PDF

Several approaches have attempted to replace extensive bone loss, but each of them has their limitation. Nowadays, additive manufacture techniques have shown great potential for bone engineering. The objective of this study was to synthesize beta tricalcium phosphate (β-TCP), beta tricalcium phosphate substituted by magnesium (β-TCMP), and biphasic calcium phosphate substituted by magnesium (BCMP) via hydrolysis and produce scaffolds for bone regeneration using robocasting technology.

View Article and Find Full Text PDF

Polyethylenimine (PEI), a cationic polymer, has been widely studied and shown great promise as an efficient gene delivery vehicle. Likewise, the HIV-1 Tat peptide, a cell-permeable peptide, has been successfully used for intracellular gene delivery. To improve the favorable properties of these two vectors, we combine PEI with the modified Tat peptide sequence bearing histidine and cysteine residues (mTat).

View Article and Find Full Text PDF

Menstruation and desquamation are important routes for humans to excrete iron. Because menstruation is no longer available in postmenopausal women, in the present study, we examined whether iron accumulates more in postmenopausal skin than in premenopausal skin. Skin biopsy samples were obtained from six pre- and six postmenopausal Caucasian women.

View Article and Find Full Text PDF

The HIV-1 Tat peptide has been successfully used for intracellular gene delivery. Likewise, various lipid-based methods have shown increased endocytosis and can influence endosomal escape. This study combines the favorable properties of Tat peptide with that of lipid systems for DNA delivery.

View Article and Find Full Text PDF

Estrogen alone cannot explain the differences in breast cancer (BC) recurrence and incidence rates in pre- and postmenopausal women. In this study, we have tested a hypothesis that, in addition to estrogen, both iron deficiency due to menstruation and iron accumulation as a result of menstrual stop play important roles in menopause-related BC outcomes. We first tested this hypothesis in cell culture models mimicking the high-estrogen and low-iron premenopausal condition or the low-estrogen and high-iron postmenopausal condition.

View Article and Find Full Text PDF

Background: Young women diagnosed with breast cancer are known to have a higher mortality rate from the disease than older patients. Specific risk factors leading to this poorer outcome have not been identified. In the present study, we hypothesized that iron deficiency, a common ailment in young women, contributes to the poor outcome by promoting the hypoxia inducible factor-1α (HIF-1α and vascular endothelial growth factor (VEGF) formation.

View Article and Find Full Text PDF

This study compared six commercially available reagents (Arrest-In, ExpressFect, FuGENE HD, jetPEI, Lipofectamine 2000, and SuperFect) for gene transfection. We examined the efficiency and cytotoxicity using nine different cell lines (MC3T3-E1 mouse preosteoblasts, PT-30 human epithelial precancer cells, C3H10T1/2 mouse stem cells, MCF-7 human breast cancer cells, HeLa human cervical cancer, C2C12 mouse myoblasts, Hep G2 human hepatocellular carcinoma, 4T1 mouse mammary carcinoma, and HCT116 human colorectal carcinoma), and primary cells (HEKn human epidermal keratinocytes) with two different plasmid DNAs encoding luciferase or β-galactosidase in the presence or absence of serum. Maximal transfection efficiency in MC3T3-E1, C3H10T1/2, HeLa, C2C12, Hep G2, and HCT116 was seen using FuGENE HD, in PT-30, 4T1, and HEKn was seen using Arrest-In, and in MCF-7 was seen using jetPEI.

View Article and Find Full Text PDF

Estrogen and iron play critical roles in a female body development and were investigated in the present study in relation to in vitro cell proliferation. Prempro, a hormone replacement therapy drug, and 17beta-estradiol (E2) were shown to increase cell proliferations in estrogen receptor positive (ER+) cells independent of progesterone receptor (PR) status. For example, increased cell proliferation was observed in ER+/PR+ human breast cancer MCF-7, its matching non-cancerous human breast epithelial MCF-12A, and ER+/PR+ murine mammary cancer MXT+ cells, but not in ER-/PR- MDA-MB-231, its matching non-cancerous MCF-10A, and MXT- (ER-/PR+) cells.

View Article and Find Full Text PDF

Deferoxamine (DFO) is a drug widely used for iron overload treatment to reduce body iron burden. In the present study, it was shown in mouse epidermal JB6 cells that all iron compounds transiently induced extracellular signal-regulated kinases (ERK) phosphorylation, whereas DFO further enhanced ERK phosphorylation over long periods. The ERK phosphorylation by DFO treatment appears to be due to the inhibition of MAPK phosphatases (MKP) by DFO.

View Article and Find Full Text PDF

Purpose: The aim of the study is to determine the reliability during a 2-year period of several newly developed iron-related assays to assess their potential for use in prospective epidemiologic studies.

Methods: We assessed the temporal reliability of several iron-related assays by using three serum samples collected at yearly intervals from 50 postmenopausal participants in a large prospective study.

Results: We observed high reliability coefficients for ferritin (0.

View Article and Find Full Text PDF

Increased iron store in the body may increase the risk of many diseases such as cancer and inflammation. However, the precise pathogenic mechanism of iron has not yet been elucidated. In the present study, the early biological responses of cells to iron treatment were investigated in AP-1 luciferase reporter stably transfected mouse epidermal JB6 cells and primary rat hepatocytes.

View Article and Find Full Text PDF

The fluorescence quenching of calcein (CA) is not iron specific and results in a negative calibration curve. In the present study, deferoxamine (DFO), a strong iron chelator, was used to regenerate the fluorescence quenched by iron. Therefore, the differences in fluorescence reading of the same sample with or without addition of DFO are positively and specifically proportional to the amounts of iron.

View Article and Find Full Text PDF

Marked regional differences in prevalence of pneumoconiosis are apparent in the US despite comparable dust exposure. In the present study, we examined the ability of 28 coal samples to release bioavailable iron (BAI) and calcium, as well as other metals such as Cr, Ni, Cu, and Co, from three coal mine regions in Utah (UT), West Virginia (WV), and Pennsylvania (PA), respectively. BAI is defined as iron (both Fe2+ and Fe3+) released by the coals in 10 mM phosphate solution, pH 4.

View Article and Find Full Text PDF

Ferrous ion (Fe(2+)) is long thought to be the most likely active species, producing oxidants through interaction of Fe(2+) with oxygen (O(2)). Because current iron overload therapy uses only Fe(3+) chelators, such as desferrioxamine (DFO), we have tested a hypothesis that addition of a Fe(2+) chelator, 2,2'-dipyridyl (DP), may be more efficient and effective in preventing iron-induced oxidative damage in human liver HepG2 cells than DFO alone. Using ferrozine as an assay for iron measurement, levels of cellular iron in HepG2 cells treated with iron compounds correlated well with the extent of lipid peroxidation (r = 0.

View Article and Find Full Text PDF