Watershed-scale ecosystem biodiversity has been adversely affected by human disturbances and climate change for many years, leading to degradation of ecological functions (i.e., decreased ecosystem multifunctionality, EMF).
View Article and Find Full Text PDFOvergrazing and phosphorus (P) deficiency are two major factors limiting the sustainable development of grassland ecosystems. Exploring plant P utilization and acquisition strategies under grazing can provide a solid basis for determining a reasonable grazing intensity. Both foliar P allocation and root P acquisition are crucial mechanisms for plants to adapt to environmental P availability; however, their changing characteristics and correlation under grazing remain unknown.
View Article and Find Full Text PDFPhosphorus (P) fertilization can alleviate a soil P deficiency in grassland ecosystems. Understanding plant functional traits that enhance P uptake can improve grassland management. We measured impacts of P addition on soil chemical and microbial properties, net photosynthetic rate (P ) and nonstructural carbohydrate concentrations ([NSC]), and root P-uptake rate (PUR), morphology, anatomy, and exudation of two dominant grass species: Leymus chinensis (C ) and Cleistogenes squarrosa (C ).
View Article and Find Full Text PDFOngoing climate change and long-term overgrazing are the main causes of grassland degradation worldwide. Phosphorus (P) is typically a limiting nutrient in degraded grassland soils, and its dynamics may play a crucial role in the responses of carbon (C) feedback to grazing. Yet how multiple P processes respond to a multi-level of grazing and its impact on soil organic carbon (SOC), which is critical for sustainable grassland development in the face of climate change, remains inadequately understood.
View Article and Find Full Text PDFIntensifying nitrogen (N) deposition disturbs the growth of grassland plants due to an imbalance between their carbon (C) and N metabolism. However, it's unclear how plant physiological strategies restore balance. We investigated the effects of multiple N addition levels (0-25 g N m yr) on the coordination of C and N metabolism in a dominant grass (Leymus chinensis) in a semiarid grassland in northern China.
View Article and Find Full Text PDFGlobal development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet.
View Article and Find Full Text PDFSoil wind erosion is an important ecological environmental problem that is widespread in arid and semi-arid regions. Currently, related studies are mainly focused on spatiotemporal characteristics or analysis of effector mechanisms, and they do not facilitate direct servicing of management decisions. In this paper, we used the Xilingol typical steppe in Inner Mongolia, China, as a study site to develop a decision framework for a comprehensive understanding of soil wind erosion and to promote sustainable management of steppes.
View Article and Find Full Text PDFOvergrazing is the main driver of grassland degradation and productivity reduction in northern China. The restoration of degraded grasslands depends on optimal grazing regimes that modify the source-sink balance to promote best carbon (C) assimilation and allocation, thereby promoting rapid compensatory growth of the grazed plants. We used in situCO labeling and field regrowth studies of Stipa grandis P.
View Article and Find Full Text PDFPlants have different physiological characteristics as the season changes, grazing management in compliance with plant growth and development characteristics may provide new ideas for sustainable livestock development. However, there has been little research on seasonal grazing and plants physiological responses under it. Here, we studied a typical steppe ecosystem of Inner Mongolia, with Leymus chinensis as the dominant species, in five grazing treatments: continuous grazing, seasonal grazing (which started in spring or in early and late summer), and no grazing (the control).
View Article and Find Full Text PDFIn temperate grassland ecosystems, grazing can affect plant growth by foraging, trampling, and excretion. The ability of dominant plant species to regrow after grazing is critical, since it allows the regeneration of photosynthetic tissues to support growth. We conducted a field experiment to evaluate the effects of different grazing intensities (control, light, medium, and heavy) on the physiological and biochemical responses of Leymus chinensis and the carbon (C) sources utilized during regrowth.
View Article and Find Full Text PDFBackground: Grazing is an important land use in northern China. In general, different grazing intensities had a different impact on the morphological and physiological traits of plants, and especially their photosynthetic capacity. We investigated the responses of Leymus chinensis to light, medium, and heavy grazing intensities in comparison with a grazing exclusion control.
View Article and Find Full Text PDFThe carbon (C) dynamics of desert steppes play an important role in the C budget of temperate steppes. Using the Terrestrial Ecosystem Regional model (TECO-R) model for desert steppes, we examined the dynamics and potential driving mechanisms for C stocks at different temporal and spatial scales from 2000 to 2017 in northern China. The ecosystem C density averaged 2.
View Article and Find Full Text PDFSheepgrass [ (Trin.) Tzvel] is a valuable forage plant highly significant to the grassland productivity of Euro-Asia steppes. Growth of above-ground tissues of is the major component contributing to the grass yield.
View Article and Find Full Text PDFHerbivory creates conflicts between a plant's need to allocate resources for growth and defense. It is not yet clear how plants rebalance resource utilization between growth and defense in response to increasing grazing intensity. We measured characteristics of the primary and secondary metabolism of Leymus chinensis at five levels of grazing intensity (control, light, moderate, heavy and extremely heavy).
View Article and Find Full Text PDFSci Total Environ
November 2016
Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of soil N availability on soil respiration (RS) is critical to understand soil carbon balances and their responses to global climate change. A 2-year field experiment was conducted to evaluate the response of RS to soil mineral N in a temperate grassland in northern China.
View Article and Find Full Text PDF