Statins are cholesterol-lowering drugs often used for the treatment of dyslipidemia. Statins also exert anti-cancer effects by inhibiting hydroxymethylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol synthesis. We previously reported that the susceptibility to statin treatment differs among cancer cells and that functional E-cadherin expression on the plasma membrane could be a biomarker of statin sensitivity in cancer cells.
View Article and Find Full Text PDFMetastatic melanoma has a very poor prognosis. Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitors, are cholesterol-lowering agents with a potential for cancer treatment. The inhibition of HMGCR by statins, however, induces feedback, which paradoxically upregulates HMGCR expression via sterol regulatory element-binding protein-2 (SREBP2).
View Article and Find Full Text PDFCanine oral melanoma is a highly malignant cancer with a poor prognosis. Statins, commonly used drugs for treating dyslipidemia, exhibit pleiotropic anticancer effects and marked anti-proliferative effects against melanoma cells. The anticancer effects among statins vary; in human cancers, lipophilic statins have shown stronger anticancer effects compared with hydrophilic statins.
View Article and Find Full Text PDFStatins, which are cholesterol synthesis inhibitors, are well-known therapeutics for dyslipidemia; however, some studies have anticipated their use as anticancer agents. However, epithelial cancer cells show strong resistance to statins through an increased expression of HMG-CoA reductase (HMGCR), an inhibitory target of statins. Castration-resistant prostate cancer (CRPC) cells synthesize androgens from cholesterol on their own.
View Article and Find Full Text PDFStatins are cholesterol-lowering drugs that have exhibited potential as cancer therapeutic agents. However, as some cancer cells are resistant to statins, broadening an anticancer spectrum of statins is desirable. The upregulated expression of the statin target enzyme, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase (HMGCR), in statin-treated cancer cells is a well-known mechanism of statin resistance, which can be counteracted by the downregulation of HMGCR gene expression, or degradation of the HMGCR protein.
View Article and Find Full Text PDFStatins have anticancer effects and may be used as anticancer agents via drug repositioning. In reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays, the internal reference gene must not be affected by any experimental conditions. As statins exert a wide range of effects on cells by inhibiting the mevalonate pathway, it is possible that statin treatment might alter the expression of housekeeping genes used as internal reference genes, thereby misleading the assessment of obtained gene expression data.
View Article and Find Full Text PDFNormalization is a crucial step in gene expression analysis to avoid misinterpretation. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression of 10 candidate housekeeping genes in non-differentiated (ND) and differentiated (DI) 3T3-L1 cells on days 5 and 10. We used geNorm, NormFinder, BestKeeper, RefFinder, and the ∆Ct method to evaluate expression stability.
View Article and Find Full Text PDFAims: Statins, cholesterol-lowering drugs, are potential therapeutic agents for inhibiting cancer proliferation. However, the mechanisms that mediate the effects of statins, the homeostatic responses of tumor cells to statin therapy, and the modes underlying the antitumor effects of statins remain unclear.
Main Methods: To uncover the effects of statins on cancer cells in vitro, we performed transcriptome and metabolome analyses on atorvastatin-treated statin-resistant and statin-sensitive lung cancer cells.
Myogenesis, the formation of muscle fibers, is affected by certain glycoproteins, including chondroitin sulfate (CS), which are involved in various cellular processes. We aimed to investigate the mechanism underlying CS-E-induced suppression of myotube formation using the myoblast cell line C2C12. Differentiated cells treated with 0.
View Article and Find Full Text PDFThe epithelial-to-mesenchymal transition (EMT) is fundamental in cancer progression and contributes to the acquisition of malignant properties. The statin class of cholesterol-lowering drugs exhibits pleiotropic anticancer effects in vitro and in vivo, and many epidemiologic studies have reported a correlation between statin use and reduced cancer mortality. We have shown previously that sensitivity to the anti-proliferative effect of statins varies among human cancer cells and statins are more effective against mesenchymal-like cells than epithelial-like ones in human cancers.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) in primary tumor cells is a key prerequisite for metastasis initiation. Statins, cholesterol-lowering drugs, can delay metastasis formation in vivo and attenuate the growth and proliferation of tumor cells in vitro. The latter effect is stronger in tumor cells with a mesenchymal-like phenotype than in those with an epithelial one.
View Article and Find Full Text PDF