Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge.
View Article and Find Full Text PDFThe collective dynamics of topological structures are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices, and these are promising for ultrafast electric-field control of topological orders.
View Article and Find Full Text PDFLocal-probe imaging of the ferroelectric domain structure and auxiliary bulk pyroelectric measurements were conducted at low temperatures with the aim to clarify the essential aspects of the orbitally driven phase transition in GaMoS, a lacunar spinel crystal that can be viewed as a spin-hole analogue of its GaVS counterpart. We employed multiple scanning probe techniques combined with symmetry and mechanical compatibility analysis to uncover the hierarchical domain structures, developing on the 10-100 nm scale. The identified domain architecture involves a plethora of ferroelectric domain boundaries and junctions, including primary and secondary domain walls in both electrically neutral and charged configurations, and topological line defects transforming neutral secondary walls into two oppositely charged ones.
View Article and Find Full Text PDFThe dielectric permittivity and properties of electrically active lattice resonances in nanotwinned BiFeO_{3} crystals have been studied theoretically using an earlier established interatomic potential. The results suggest that an array of 71° domain walls with about 2-5 nm spacing enhances the static permittivity of BiFeO_{3} by more than an order of magnitude. This enhancement is associated with an electrically active excitation, corresponding to a collective vibration of pinned domain walls at a remarkably high frequency of about 0.
View Article and Find Full Text PDF