Publications by authors named "Jiri Wanner"

The study evaluated the impact of treated wastewater on plant growth through the use of hyperspectral and fluorescence-based techniques coupled with classical biomass analyses, and assessed the potential of reusing treated wastewater for irrigation without fertilizer application. Cherry tomato () and cabbage ( L.) were irrigated with tap water (Tap), secondary effluent (SE), and membrane effluent (ME).

View Article and Find Full Text PDF

Many reports have documented that the presence of SARS-CoV-2 RNA in the influents of municipal wastewater treatment plants (WWTP) correlates with the actual epidemic situation in a given city. However, few data have been reported thus far on measurements upstream of WWTPs, i.e.

View Article and Find Full Text PDF

The paper summarizes the development in the understanding and practical application of the activated sludge process over the last 50 years. Since its invention, the activated sludge process has been a big challenge to design engineers. Traditionally, the technology was covered by sanitary engineers.

View Article and Find Full Text PDF

The appropriateness of using treated wastewater for crop or agricultural irrigation remains a bone of contention among experts and policymakers. Here, we outline and analyze not only the benefits but also the drawbacks of such a practice in order to suggest a way forward. To ensure that our review reflects the state-of-the-art in terms of technological advances and best practices, only literature published in the last decade is considered except for literature on the history of reuse.

View Article and Find Full Text PDF

This work focuses on the removal of ammonia nitrogen pollution from wastewaters in a two-stage laboratory model based on a combination of the nitritation and anammox processes with the biomass immobilized in a polyvinyl alcohol (PVA) matrix. Owing to the immobilization approach inside the PVA pellets, the bacterial activity remained nearly unchanged on an abrupt change in the environmental conditions. The nitritation kinetics were significantly dependent on the dissolved oxygen concentration.

View Article and Find Full Text PDF

The influence of industrial (pharmaceutical and chemical) wastewater composition on membrane bioreactor (MBR) performance was investigated in a pilot-scale installation. The study focussed on nitrification performance, which was evaluated based on influent and effluent parameters as well as batch nitrification rate tests. The industrial wastewater was pumped into the MBR in a mixture with municipal wastewater at constant flow rate.

View Article and Find Full Text PDF

Many articles have been published on coagulant dosing in membrane bioreactors, though few have been long-term studies examining the treatment of real wastewater. This study summarises the results of a membrane bioreactor pilot-plant (flat sheet membrane, nominal pore size 0.03 μm) that treated real municipal wastewater for two-years.

View Article and Find Full Text PDF

A seasonally operated full-scale membrane bioreactor plant (flat sheet, 0.03 μm) treating municipal wastewater from a recreation facility was monitored for 2 years. In particular, membrane bioreactor operation characteristics and development and changes in extracellular polymeric substances and soluble microbial product concentrations were observed, which were both dependent on volume and quality of incoming wastewater.

View Article and Find Full Text PDF

The aim of this work was to compare three methods to determinate low concentrations of Paracoccus denitrificans encapsulated in polyvinyl alcohol pellets, which is important for evaluation and optimization of pellet production as well as for monitoring of biomass growth. Pellets with different and well-defined biomass concentrations were used for experiments. The following fast and simple methods were tested: (1) dissolution of polyvinyl alcohol in hot water followed by dry weight estimation, (2) dissolution of polyvinyl alcohol in hot water followed by optical density measurement, (3) and extraction and quantification of proteins.

View Article and Find Full Text PDF

The main goal of this research was to investigate how different factors influence membrane fouling. The impact of the different concentrations of activated sludge and the amount of extracellular polymer substances (EPS) were monitored. Two pilot plants with submerged membrane modules (hollow fiber and flat sheet) were operated and the raw wastewater was used.

View Article and Find Full Text PDF

The aim of this work was to compare denitrification activity of three types of encapsulated biomass containing pure culture of Paracoccus denitrificans or Pseudomonas fluorescens or mixed culture of psychrophilic denitrifiers cultivated at 5 °C from activated sludge. The experiments were held with synthetic wastewater containing 50 mg L(-1) N-NO(3)(-) under the temperature 15, 10, 8 and 5 °C. Specific denitrification rates related to the weight of pellets and to the protein content were calculated and the temperature coefficients describing the dependence of denitrification rate on the temperature were determined.

View Article and Find Full Text PDF

Increasing incidences of activated sludge foaming have been reported in the last decade in Danish plants treating both municipal and industrial wastewaters. In most cases, foaming is caused by the presence of Actinobacteria; branched mycolic acid-containing filaments (the Mycolata) and the unbranched Candidatus'Microthix parvicella'. Surveys from wastewater treatment plants revealed that the Mycolata were the dominant filamentous bacteria in the foam.

View Article and Find Full Text PDF