The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.
View Article and Find Full Text PDFLarge mandibular continuity defects pose a significant challenge in oral maxillofacial surgery. One solution to this problem is to use computer-guided surgical planning and additive manufacturing technology to produce patient-specific reconstruction plates. However, when designing customized plates, it is important to assess potential biomechanical responses that may vary substantially depending on the size and geometry of the defect.
View Article and Find Full Text PDFIntroduction: The process of fabricating physical medical skull models requires many steps, each of which is a potential source of geometric error. The aim of this study was to demonstrate inaccuracies and differences caused by DICOM to STL conversion in additively manufactured medical skull models.
Material And Methods: Three different institutes were requested to perform an automatic reconstruction from an identical DICOM data set of a patients undergoing tumour surgery into an STL file format using their software of preference.