Publications by authors named "Jiri Stuchlik"

A systematic experimental study was performed to determine laser irradiation conditions for the large-area fabrication of highly regular laser-induced periodic surface structures (HR-LIPSS) on a 220 nm thick Mo film deposited on fused silica. The LIPSS were fabricated by scanning a linearly polarized, spatially Gaussian laser beam at 1030 nm wavelength and 1.4 ps pulse duration over the sample surface at 1 kHz repetition rate.

View Article and Find Full Text PDF

We report the results of a microscopic study of the nucleation and early growth stages of metal-catalyzed silicon nanowires in plasma-enhanced chemical vapor deposition. The nucleation of silicon nanowires is investigated as a function of different deposition conditions and metal catalysts (Sn, In and Au) using correlation of atomic force microscopy and scanning electron microscopy. This correlation method enabled us to visualize individual catalytic nanoparticles before and after the nanowire growth and identify the key parameters influencing the nanowire nucleation under plasma.

View Article and Find Full Text PDF

Densely packed ZnO nanocolumns (NCs), perpendicularly oriented to the fused-silica substrates were directly grown under hydrothermal conditions at 90 °C, with a growth rate of around 0.2 μm/h. The morphology of the nanostructures was visualized and analyzed by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Conductive tips in atomic force microscopy (AFM) can be used to localize field-enhanced metal-induced solid-phase crystallization (FE-MISPC) of amorphous silicon (a-Si:H) at room temperature down to nanoscale dimensions. In this article, the authors show that such local modifications can be used to selectively induce further localized growth of silicon nanocrystals. First, a-Si:H films by plasma-enhanced chemical vapor deposition on nickel/glass substrates are prepared.

View Article and Find Full Text PDF