Publications by authors named "Jiri Smilek"

This manuscript explores the interaction between methylene blue dye and gelatin within a membrane using spectroscopy and image analysis. Emphasis is placed on methylene blue's unique properties, specifically its ability to oscillate between two distinct resonance states, each with unique light absorption characteristics. Image analysis serves as a tool for examining dye diffusion and absorption.

View Article and Find Full Text PDF

Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination.

View Article and Find Full Text PDF

Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers.

View Article and Find Full Text PDF

Protection of concrete against aggressive influences from the surrounding environment becomes an important step to increase its durability. Today, alkali silicate solutions are advantageously used as pore-blocking treatments that increase the hardness and impermeability of the concrete's surface layer. Among these chemical substances, known as concrete densifiers, lithium silicate solutions are growing in popularity.

View Article and Find Full Text PDF

Films prepared from poly(3-hydroxybutyrate--4-hydroxybutyrate) copolymers produced by sp. H1 using an automatic film applicator were homogeneous and had a defined thickness, which allowed a detailed study of physicochemical properties. Their properties were compared with those of a poly (3-hydroxybutyrate) homopolymer film prepared by the same procedure, which proved to be significantly more crystalline by DSC and XRD.

View Article and Find Full Text PDF

Gradient hydrogels are promising future materials which could be usable in tissue engineering (scaffolds), pharmaceutical (drug delivery systems with controlled release) and many others related disciplines. These hydrogels exhibit a more complex inner (gradient) structure (e.g.

View Article and Find Full Text PDF

Nowadays, hydrogels are found in many applications ranging from the industrial to the biological (e.g., tissue engineering, drug delivery systems, cosmetics, water treatment, and many more).

View Article and Find Full Text PDF

Fused deposition modelling (FDM) is a process of additive manufacturing allowing creating of highly precise complex three-dimensional objects for a large range of applications. The principle of FDM is an extrusion of the molten filament and gradual deposition of layers and their solidification. Potential applications in pharmaceutical and medical fields require the development of biodegradable and biocompatible thermoplastics for the processing of filaments.

View Article and Find Full Text PDF

This study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active compound. As it is experimentally illustrated on the prototype hydrogels prepared from agarose interpenetrated by poly(styrene sulfonate) (PSS) and alginate (ALG), respectively, the main benefit brought by this concept is represented by the ability to tune the mechanical and transport performance of the material independently via manipulating the relative content of the two structural components. A unique analytical methodology is proposed to provide complex insight into composition-structure-performance relationships in the hydrogel material combining methods of analysis on the macroscopic scale, but also in the specific microcosms of the gel network.

View Article and Find Full Text PDF

Gradient hydrogels refer to hydrogel materials with a gradual or abrupt change in one or some of their properties. They represent examples of more sophisticated gel materials in comparison to simple, native gel networks. Here, we review techniques used to prepare gradient hydrogels which have been reported in literature over the last few years.

View Article and Find Full Text PDF

Background: Experimental determination of the extent and rate of transport of liquid humates supplied to plants is critical in testing physiological effects of such biostimulants which are often supplied as foliar sprays. Therefore, an original experimental method for the qualitative investigation and quantitative description of the penetration of humates through plant cuticles is proposed, tested, and evaluated.

Results: The proposed method involves the isolation of model plant leaf cuticles and the subsequent in vitro evaluation of cuticular humate transport.

View Article and Find Full Text PDF

The rheological properties of hydrogels prepared by physical interactions between oppositely charged polyelectrolyte and surfactant in micellar form were studied. Specifically, hyaluronan was employed as a negatively charged polyelectrolyte and Septonex (carbethopendecinium bromide) as a cationic surfactant. Amino-modified dextran was used as a positively charged polyelectrolyte interacting with sodium dodecylsulphate as an anionic surfactant.

View Article and Find Full Text PDF

Humic acids are often regarded as substances with a supramolecular structure which plays an important role in Nature. Their addition into hydrogels can affect their behavior and functioning in different applications. This work is focused on the properties of widely-used hydrogel based on agarose after addition of humic acids-the protonated H-form of humic acids and humic acids with methylated carboxylic groups.

View Article and Find Full Text PDF

Soil pollution by the presence of different contaminants (e.g. heavy metal ions or pesticides) is one of the biggest problems worldwide.

View Article and Find Full Text PDF

Interactions of humic acids (HAs) with two cationic dyes (methylene blue and rhodamine 6G) were studied using a unique combination of diffusion and partitioning studies in HAs, containing hydrogels and batch sorption experiments. In order to investigate the involvement of carboxyl groups of HAs in these interactions, all experiments were performed for both, the original lignite HAs and HAs with selectively methylated carboxyls. The results of the diffusion experiments confirm that the interactions between the solute and humic substances have a strong impact on the rate of diffusion process.

View Article and Find Full Text PDF