Publications by authors named "Jiri Safar"

Article Synopsis
  • Human prion diseases are unusual brain illnesses that can spread and cause quick changes in memory and thinking.
  • The study looked at a specific type called sporadic Creutzfeldt-Jakob disease (sCJD), examining data from over 3,700 cases to understand how long the disease lasts and at what age it starts.
  • Researchers found important genetic clues on chromosome 20 that can help understand how long people live with this disease, especially one specific genetic change that seems to have a big effect on survival time.
View Article and Find Full Text PDF

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown.

View Article and Find Full Text PDF

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the gene. Of human prion disease cases, ~1% were transmitted by misfolded PrP, ~15% are inherited, and ~85% are sporadic (sCJD). While familial cases are inherited through germline mutations in , the cause of sCJD is unknown.

View Article and Find Full Text PDF

Real-time quaking-induced conversion assay (RT-QuIC) exploits templating activity of pathogenic prion protein for ultrasensitive detection of prions. We have utilized second generation RT-QuIC assay to analyze matching post-mortem cerebrospinal fluid and skin samples of 38 prion disease patients and of 30 deceased neurological controls. The analysis of cerebrospinal fluid samples led to 100% sensitivity and 100% specificity, but some samples had to be diluted before the analysis to alleviate the effect of present RT-QuIC inhibitors.

View Article and Find Full Text PDF

Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrP). Our previous study revealed that PrP-seeding activity (PrP-SA) is detectable in skin of sCJD patients by an ultrasensitive PrP seed amplification assay (PrP-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls.

View Article and Find Full Text PDF

Introduction: Recent data suggest that distinct prion-like amyloid beta and tau strains are associated with rapidly progressive Alzheimer's disease (rpAD). The role of genetic factors in rpAD is largely unknown.

Methods: Previously known AD risk loci were examined in rpAD cases.

View Article and Find Full Text PDF

Objectives: Although accumulation of misfolded tau species has been shown to predict cognitive decline in patients with Alzheimer's disease (AD) and other tauopathies but with the remarkable diversity of clinical manifestations, neuropathology profiles, and time courses of disease progression remaining unexplained by current genetic data. We considered the diversity of misfolded tau conformers present in individual AD cases as an underlying driver of the phenotypic variations of AD and progressive loss of synapses.

Methods: To model the mechanism of tau propagation and synaptic toxicity of distinct tau conformers, we inoculated wild-type primary mouse neurons with structurally characterized Sarkosyl-insoluble tau isolates from the frontal cortex of six AD cases and monitored the impact for fourteen days.

View Article and Find Full Text PDF

Recent findings of diverse populations of prion-like conformers of misfolded tau protein expand the prion concept to Alzheimer's disease (AD) and monogenic frontotemporal lobar degeneration (FTLD)-MAPT P301L, and suggest that distinct strains of misfolded proteins drive the phenotypes and progression rates in many neurodegenerative diseases. Notable progress in the previous decades has generated many lines of proof arguing that yeast, fungal, and mammalian prions determine heritable as well as infectious traits. The extraordinary phenotypic diversity of human prion diseases arises from structurally distinct prion strains that target, at different progression speeds, variable brain structures and cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the prion-like propagation of amyloid-β (Aβ). However, the role of Aβ in cognitive impairment is still unclear. To determine the causal role of Aβ in AD, we intracerebrally seeded the entorhinal cortex of a 2-month-old mouse model with an Aβ peptide derived from patients who died from rapidly progressing AD.

View Article and Find Full Text PDF

Although genetic factors play a main role in determining the risk of developing Alzheimer’s disease (AD), they do not explain extensive spectrum of clinicopathological phenotypes. Deposits of aggregated TAU proteins are one of the main predictors of cognitive decline in AD. We investigated the hypothesis that variabilities in AD progression could be due to diverse structural assemblies (strains) of TAU protein.

View Article and Find Full Text PDF

Amyloid beta (Aβ) deposition in the neocortex is a major hallmark of Alzheimer's disease (AD), but the extent of deposition does not readily explain phenotypic diversity and rate of disease progression. The prion strain-like model of disease heterogeneity suggests the existence of different conformers of Aβ. We explored this paradigm using conformation-dependent immunoassay (CDI) for Aβ and conformation-sensitive luminescent conjugated oligothiophenes (LCOs) in AD cases with variable progression rates.

View Article and Find Full Text PDF

Background: The microtubule-associated protein tau forms aggregates in different neurodegenerative diseases called tauopathies. Prior work has shown that a single P301L mutation in tau gene, MAPT, can promote alternative tau folding pathways that correlate with divergent clinical diagnoses. Using progressive chemical denaturation, some tau preparations from the brain featured complex transitions starting at low concentrations of guanidine hydrochloride (GdnHCl) denaturant, indicating an ensemble of differently folded tau species called conformers.

View Article and Find Full Text PDF

Variably protease-sensitive prionopathy (VPSPr) is a recently described sporadic prion disease with distinctive clinical and histopathological features. We report the clinical, imaging, and neuropathological features of VPSPr in a 46-year-old right-handed man who presented with progressive cognitive decline, behavior disturbances, and a 50-pound weight loss over 6 months. The initial evaluation revealed severe cognitive impairment with no focal neurologic deficits.

View Article and Find Full Text PDF

There is a limited understanding of structural attributes that encode the iatrogenic transmissibility and various phenotypes of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD). Here we report the detailed structural differences between major sCJD MM1, MM2, and VV2 prions determined with two complementary synchrotron hydroxyl radical footprinting techniques-mass spectrometry (MS) and conformation dependent immunoassay (CDI) with a panel of Europium-labeled antibodies. Both approaches clearly demonstrate that the phenotypically distant prions differ in a major way with regard to their structural organization, and synchrotron-generated hydroxyl radicals progressively inhibit their seeding potency in a strain and structure-specific manner.

View Article and Find Full Text PDF

Tau accumulation is a prominent feature in a variety of neurodegenerative disorders and remarkable effort has been expended working out the biochemistry and cell biology of this cytoplasmic protein. Tau's wayward properties may derive from germline mutations in the case of frontotemporal lobar degeneration (FTLD-MAPT) but may also be prompted by less understood cues-perhaps environmental or from molecular damage as a consequence of chronological aging-in the case of idiopathic tauopathies. Tau properties are undoubtedly affected by its covalent structure and in this respect tau protein is not only subject to changes in length produced by alternative splicing and endoproteolysis, but different types of posttranslational modifications that affect different amino acid residues.

View Article and Find Full Text PDF

Objective: Real-time quaking-induced conversion (RT-QuIC) assays detect prion-seeding activity in a variety of human biospecimens, including cerebrospinal fluid and olfactory mucosa swabs. The assay has shown high diagnostic accuracy in patients with prion disorders. Recently, advances in these tests have led to markedly improved diagnostic sensitivity and reduced assay times.

View Article and Find Full Text PDF

Recent studies in animal models demonstrate that certain misfolded proteins associated with neurodegenerative diseases can support templated misfolding of cognate native proteins, to propagate across neural systems, and to therefore have some of the properties of classical prion diseases like Creutzfeldt-Jakob disease. The National Institute of Aging convened a meeting to discuss the implications of these observations for research priorities. A summary of the discussion is presented here, with a focus on limitations of current knowledge, highlighting areas that appear to require further investigation in order to guide scientific practice while minimizing potential exposure or risk in the laboratory setting.

View Article and Find Full Text PDF

Background: Human prion diseases are rare and usually rapidly fatal neurodegenerative disorders, the most common being sporadic Creutzfeldt-Jakob disease (sCJD). Variants in the PRNP gene that encodes prion protein are strong risk factors for sCJD but, although the condition has similar heritability to other neurodegenerative disorders, no other genetic risk loci have been confirmed. We aimed to discover new genetic risk factors for sCJD, and their causal mechanisms.

View Article and Find Full Text PDF

Accumulation of phosphorylated tau is a key pathological feature of Alzheimer's disease. Phosphorylated tau accumulation causes synaptic impairment, neuronal dysfunction and formation of neurofibrillary tangles. The pathological actions of phosphorylated tau are mediated by surrounding neuronal proteins; however, a comprehensive understanding of the proteins that phosphorylated tau interacts with in Alzheimer's disease is surprisingly limited.

View Article and Find Full Text PDF

Importance: Early diagnosis is a requirement for future treatment of prion diseases. Magnetic resonance imaging (MRI) with diffusion-weighted images and improved real-time quaking-induced conversion (RT-QuIC) in cerebrospinal fluid (CSF) have emerged as reliable tests.

Objectives: To assess the sensitivity and specificity of diffusion MRI for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) with a new criterion (index test) of at least 1 positive brain region among the cortex of the frontal, parietal, temporal, and occipital lobes; the caudate; the putamen; and the thalamus.

View Article and Find Full Text PDF

Amyloid-β (Aβ) deposition occurs years before cognitive symptoms appear and is considered a cause of Alzheimer's disease (AD). The imbalance of Aβ production and clearance leads to Aβ accumulation and Aβ deposition. Increasing evidence indicates an important role of astrocytes, the most abundant cell type among glial cells in the brain, in Aβ clearance.

View Article and Find Full Text PDF

Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTau transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is caused by an unknown spectrum of prions and has become enzootic in populations of cervid species that express cellular prion protein (PrP) molecules varying in amino acid composition. These PrP polymorphisms can affect prion transmission, disease progression, neuropathology, and emergence of new prion strains, but the mechanistic steps in prion evolution are not understood. Here, using conformation-dependent immunoassay, conformation stability assay, and protein-misfolding cyclic amplification, we monitored the conformational and phenotypic characteristics of CWD prions passaged through deer and transgenic mice expressing different cervid PrP polymorphisms.

View Article and Find Full Text PDF