Publications by authors named "Jiri Pergner"

Article Synopsis
  • The vertebrate eye's evolution is still unclear, but recent studies suggest a connection between amphioxus eye structures and vertebrate photoreceptors.
  • Using comparative molecular data from different amphioxus species, researchers identified unique photoreceptors and neurons in the frontal eye, reinforcing similarities across cephalochordates.
  • The study highlights the importance of the Notch signaling pathway for proper development of eye cell types, supporting the idea that amphioxus frontal eyes are homologous to vertebrate eyes.
View Article and Find Full Text PDF

Transposable elements (TEs) are able to jump to new locations (transposition) in the genome, usually after replication. They constitute the so-called selfish or junk DNA and take over large proportions of some genomes. Due to their ability to move around they can change the DNA landscape of genomes and are therefore a rich source of innovation in genes and gene regulation.

View Article and Find Full Text PDF

Cephalochordates, commonly called amphioxus or lancelets, are widely regarded as a useful proxy for the chordate ancestor. In recent decades, expression patterns of important developmental genes have been used extensively to infer homologies between cephalochordate and vertebrate embryos. Such comparisons provided important insight into cephalochordate biology and the origin of vertebrate traits.

View Article and Find Full Text PDF

Light detection in animals is predominantly based on the photopigment composed of a protein moiety, the opsin, and the chromophore retinal. Animal opsins originated very early in metazoan evolution from within the G-Protein Coupled Receptor (GPCR) gene superfamily and diversified into several distinct branches prior to the cnidarian-bilaterian split. The origin of opsin diversity, opsin classification and interfamily relationships have been the matter of long-standing debate.

View Article and Find Full Text PDF

Studies on amphioxus, representing the most basal group of chordates, can give insights into the evolution of vertebrate traits. The present review of amphioxus research is focused on the physiology of light-guided behavior as well as on the fine structure, molecular biology, and electrophysiology of the nervous system, with special attention being given to the photoreceptive organs. The amphioxus visual system is especially interesting because four types of receptors are involved in light detection - dorsal ocelli and Joseph cells (both rhabdomeric photoreceptors) and the frontal eye and lamellar body (both ciliary photoreceptors).

View Article and Find Full Text PDF

Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved.

View Article and Find Full Text PDF

The origin of vertebrate eyes is still enigmatic. The "frontal eye" of amphioxus, our most primitive chordate relative, has long been recognized as a candidate precursor to the vertebrate eyes. However, the amphioxus frontal eye is composed of simple ciliated cells, unlike vertebrate rods and cones, which display more elaborate, surface-extended cilia.

View Article and Find Full Text PDF