Background: Sulphur (S) deficiency has emerged in recent years in European soils due to the decreased occurrence of acid rains. Elemental sulphur (S) is highly beneficial as a source of S in agriculture, but it must be oxidized to a plant-accessible form. Micro- or nano-formulated S may undergo accelerated transformation, as the oxidation rate of S indirectly depends on particle size.
View Article and Find Full Text PDFMicroplastics, pervasive contaminants in freshwater ecosystems, have raised ecological concerns. Efforts are underway to substitute conventional plastics with biodegradable alternatives that should be more easily decomposed in the environment. However, the biodegradation of these alternatives depends on specific conditions such as temperature, humidity, pH, and microorganisms, which are not always met.
View Article and Find Full Text PDFBiodegradable plastics play a vital role in addressing global plastics disposal challenges. Poly-3-hydroxybutyrate (P3HB) is a biodegradable bacterial intracellular storage polymer with substantial usage potential in agriculture. Poly-3-hydroxybutyrate and its degradation products are non-toxic; however, previous studies suggest that P3HB biodegradation negatively affects plant growth because the microorganisms compete with plants for nutrients.
View Article and Find Full Text PDFThe search for eco-friendly substitutes for traditional plastics has led to the production of biodegradable bioplastics. However, concerns have been raised about the impact of bioplastic biodegradation on soil health. Despite these concerns, the potential negative consequences of bioplastics during various stages of biodegradation remain underexplored.
View Article and Find Full Text PDFThe extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 μm and particles from 63 to 125 μm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant .
View Article and Find Full Text PDFScientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.
View Article and Find Full Text PDFConversion of poultry litter into fertilizer presents an environmentally friendly way for its disposal. The amendment of stabilizing sorption materials (e.g.
View Article and Find Full Text PDFThe ever-increasing human population associated with high rate of waste generation may pose serious threats to soil ecosystem. Nevertheless, conversion of agricultural and food wastes to biochar has been shown as a beneficial approach in sustainable soil management. However, our understanding on how integration of biochar obtained from different wastes and mineral fertilizers impact soil microbiological indicators is limited.
View Article and Find Full Text PDFAdverse effects of microplastics on soil abiotic properties have been attributed to changes in the soil structure. Notably, however, the effects on the supramolecular structure of soil organic matter (SOM) have been overlooked, despite their key role in most soil properties. This work accordingly investigated the influence of plastic residues at various concentrations on the SOM supramolecular structure and soil water properties.
View Article and Find Full Text PDFThe unprecedented rise in the human population has increased pressure on agriculture production. To enhance the production of crops, farmers mainly rely on the use of chemical fertilizers and pesticides, which have, undoubtedly, increased the production rate but at the cost of losing sustainability of the environment in the form of genetic erosion of indigenous varieties of crops and loss of fertile land. Therefore, farming practices need to upgrade toward the use of biological agents to maintain the sustainability of agriculture and the environment.
View Article and Find Full Text PDFCadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression.
View Article and Find Full Text PDFConventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked.
View Article and Find Full Text PDFAmong heavy metals, chromium (Cr) contamination is increasing gradually due to the use of untreated industrial effluents for irrigation purposes, thereby posing a severe threat to crop production. This study aimed to evaluate the potential of compost, biochar (BC), and co-composted BC on the growth, physiological, biochemical attributes, and health risks associated with the consumption of grown on Cr-contaminated soil. Results revealed that Cr stress (Cr-25) significantly reduced the growth and physiological attributes and increased antioxidant enzyme activities in , but the applied amendments considerably retrieved the negative effects of Cr toxicity through improving the growth and physiology of plants.
View Article and Find Full Text PDFAgriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost.
View Article and Find Full Text PDFCurrently, non-biodegradable oil-based plastics are gradually being replaced by bio-based biodegradable plastics to prevent the formation of microplastics. For biodegradable materials to decompose completely, however, they require specific conditions that are rarely met in ecosystems. Paradoxically, this may lead to the fast production of microplastics from biodegradable materials, i.
View Article and Find Full Text PDFEngineered and anthropogenic nanoparticles represent a new type of pollutants. Up until now, many studies have reported its adverse effect on biota, but the potential influence on the properties and functions of environmental compartments has largely been ignored. In this work, the effect of Pt nanoparticles on the functions and properties of model soil organic matter has been studied.
View Article and Find Full Text PDFMethods for analysis of microplastic in soils are still being developed. In this study, we evaluated the potential of a soil universal model method (SUMM) based on thermogravimetry (TGA) for the identification and quantification of microplastics in standard loamy sand. Blank and spiked soils (with amounts of one of four microplastic types) were analyzed by TGA.
View Article and Find Full Text PDFPhysical and chemical structure affect properties of dissolved organic matter (DOM). Recent observations revealed that heating and cooling cycles at higher temperature amplitude lead to a change in DOM physical conformation assumingly followed by a slow structural relaxation. In this study, changes at lower temperature amplitudes and their relation to DOM composition were investigated using simultaneous measurements of density and ultrasonic velocity in order to evaluate the adiabatic compressibility, which is sensitive indicator of DOM structural microelasticity.
View Article and Find Full Text PDFAdsorption is the main mechanism of capturing water in soil organic matter (SOM) under arid conditions. This process is governed by hydrophilic sites, which are gradually bridged via water molecule bridges (WaMB). Until now, the link between WaMB and other types of water molecules occurring in SOM during sorption has not been systematically investigated.
View Article and Find Full Text PDFThe use of plastic materials in daily life, industry, and agriculture can cause soil pollution with plastic fragments down to the micrometer scale, i.e., microplastics.
View Article and Find Full Text PDFWater molecules in soil organic matter (SOM) can form clusters bridging neighboring molecular segments (water molecule bridges, WaMBs). WaMBs are hypothesized to enhance the physical entrapment of organic chemicals and to control the rigidity of the SOM supramolecular structure. However, the understanding of WaMBs dynamics in SOM is still limited.
View Article and Find Full Text PDFMany soil functions depend on the interaction of water with soil. The affinity of water for soils can be altered by applying soil amendments like stone meal, manure, or biochar (a carbonaceous material obtained by pyrolysis of biomasses). In fact, the addition of hydrophobic biochar to soil may increase soil repellency, reduce water-adsorbing capacity, inhibit microbial activity, alter soil filter, buffer, storage, and transformation functions.
View Article and Find Full Text PDFConcentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) in air and soil, their fugacities, and the experimental soil-air partitioning coefficient (KSA) were determined at two background sites in the Gt. Hungarian Plain in August 2013. The concentrations of the semivolatile organic compounds (SOCs) in the soil were not correlated with the organic carbon content but with two indirect parameters of mineralization and aromaticity, suggesting that soil organic matter quality is an important parameter affecting the sorption of SOCs onto soils.
View Article and Find Full Text PDF