Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein.
View Article and Find Full Text PDFFibronectin (FN) circulating in the blood and produced by cells provides the basis of the extracellular matrix (ECM) formed in healing acute wounds. The time-dependent deposition of FN by macrophages, its synthesis by fibroblasts and myofibroblasts, and later degradation in the remodeled granulation tissue are a prerequisite for successful healing of wounds. However, the pattern of FN expression and deposition in skin lesions is disturbed.
View Article and Find Full Text PDFA characteristic feature of liver cirrhosis is the accumulation of large amounts of connective tissue with the prevailing content of type I collagen. Elastin is a minor connective tissue component in normal liver but it is actively synthesized by hepatic stellate cells and portal fibroblasts in diseased liver. The accumulation of elastic fibers in later stages of liver fibrosis may contribute to the decreasing reversibility of the disease with advancing time.
View Article and Find Full Text PDFType I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors.
View Article and Find Full Text PDFActa Medica (Hradec Kralove)
May 2014
Activated hepatic stellate cells (HSC) are a major source offibrous proteins in cirrhotic liver. Inducing or accelerating their apoptosis is a potential way of liver fibrosis treatment. Extracellular matrix (ECM) surrounding cells in tissue affects their differentiation, migration, proliferation and function.
View Article and Find Full Text PDFActa Medica (Hradec Kralove)
February 2012
Wound healing is a complex physiological process important for tissue homeostasis. An acute injury initiates massive cell migration, proliferation and differentiation, synthesis of extracellular matrix components, scar formation and remodelling. Blood flow and tissue oxygenation are parts of the complex regulation of healing.
View Article and Find Full Text PDFImpaired diabetic wound healing is an important current medical issue, mainly concerning patients recovering from complicated operations or patients with ulcers on their feet. The obese Zucker diabetic fatty rat, with a mutation in leptin receptors, may be a good choice for studying impaired wound healing. Male and female rats were fed a diabetogenic high-fat diet.
View Article and Find Full Text PDFHepatic stellate cells (HSC) and liver myofibroblasts (MFB) are two cell populations most likely responsible for the synthesis of most connective tissue components in fibrotic liver. They differ in their origin and location, and possibly in patterns of gene expression. Normal and carbon tetrachloride-cirrhotic livers from rats were used to isolate HSC.
View Article and Find Full Text PDFHepatic stellate cells (HSC) are located in Disse spaces of normal rat liver. In their quiescent state they serve as a storage site for vitamin A. In fibrotic liver they become activated, proliferate and they undergo transdifferentiation into myofibroblast-like cells.
View Article and Find Full Text PDFBackground/aims: Activated hepatic stellate cells (HSC) are regarded as the principal cells synthesizing extracellular matrix components in fibrotic liver. Elastin content is increased in cirrhotic livers, but the cellular source is not known. Contribution of HSC to the production of elastin was investigated.
View Article and Find Full Text PDF