Texture features are designed to quantitatively evaluate patterns of spatial distribution of image pixels for purposes of image analysis and interpretation. Unexplained variations in the texture patterns often lead to misinterpretation and undesirable consequences in medical image analysis. In this paper we explore the ability of machine learning (ML) methods to design a radiology test of Osteoarthritis (OA) at early stage when the number of patients' cases is small.
View Article and Find Full Text PDFIEEE Trans Med Imaging
August 2018
The success of deep convolutional neural networks (NNs) on image classification and recognition tasks has led to new applications in very diversified contexts, including the field of medical imaging. In this paper, we investigate and propose NN architectures for automated multiclass segmentation of anatomical organs in chest radiographs (CXRs), namely for lungs, clavicles, and heart. We address several open challenges including model overfitting, reducing number of parameters, and handling of severely imbalanced data in CXR by fusing recent concepts in convolutional networks and adapting them to the segmentation problem task in CXR.
View Article and Find Full Text PDFThe spinal column is one of the most distinguishable structures in CT scans of the superior part of the human body. It is not necessary to segment the spinal column in order to use it as a frame of reference. It is sufficient to place landmarks and the appropriate anatomical labels at intervertebral disks and vertebrae.
View Article and Find Full Text PDFNeurobiology investigates how anatomical and physiological relationships in the nervous system mediate behavior. Molecular genetic techniques, applied to species such as the common fruit fly Drosophila melanogaster, have proven to be an important tool in this research. Large databases of transgenic specimens are being built and need to be analyzed to establish models of neural information processing.
View Article and Find Full Text PDFIn order to robustly match a statistical model of shape and appearance (e.g. AAM) to an unseen image, it is crucial to employ a robust model fittness measure.
View Article and Find Full Text PDF