The fascinating feature of metal-organic frameworks is that they can respond to external stimuli, unlike other inorganic materials. This feature corresponds to the framework's flexibility, which originates with the long-range crystalline order of the framework accompanied by cooperative structural transformability. We have synthesized a novel metal-organic framework comprised of Cu(I) nodes with pyrazine linkers and benzene-1,3,5-tricarboxylate acting as template anions, named CUCAM-1 [Cu(Py)(BTC)].
View Article and Find Full Text PDFThe morphology of zeolite crystals strongly affects their textural, catalytic, and mechanical attributes. However, controlling zeolite crystal morphology without using modifiers or structure-directing agents remains a challenging task because of our limited understanding of the relationships between zeolite crystal shape, crystallization mechanism, and composition of the starting synthesis mixture. In this study, we aimed at developing a general method for controlling the morphology of zeolites by assessing the impact of the Si/T molar ratio of the synthesis gel on the growth rate of zeolite crystals in various crystallographic directions and on the final crystal morphology of the germanosilicate with a 2D system of intersecting 14- and 12-ring pores.
View Article and Find Full Text PDFJ Mater Chem A Mater
January 2024
Zeolites have been well known for decades as catalytic materials and adsorbents and are traditionally prepared using the bottom-up synthesis method. Although it was productive for more than 250 zeolite frameworks, the conventional solvothermal synthesis approach provided limited control over the structural characteristics of the formed materials. In turn, the discovery and development of the Assembly-Disassembly-Organization-Reassembly (ADOR) strategy for the regioselective manipulation of germanosilicates enabled the synthesis of previously unattainable zeolites with predefined structures.
View Article and Find Full Text PDFZeolites are highly efficient industrial catalysts and sorbents with microporous framework structures. Approximately 10% of the frameworks, but eventually all in the long run, have produced both 3D crystals and 2D layers. The latter can be intercalated and expanded like all 2D materials but proved difficult to exfoliate directly into suspensions of monolayers in solution as precursors for unique synthetic opportunities.
View Article and Find Full Text PDFZeolites are key materials in both basic research and industrial applications. However, their synthesis is neither diverse nor applicable to labile frameworks because classical procedures require harsh hydrothermal conditions, whereas post-synthesis methods are limited to a few suitable parent materials. Remaining frameworks can fail due to amorphization, dissolution, and other decomposition processes.
View Article and Find Full Text PDFProfessor RNDr. Petr Nachtigall, PhD passed away on 28 December 2022. He was an internationally recognized expert in computational materials science; working at Charles University in the Department of Physical and Macromolecular Chemistry.
View Article and Find Full Text PDFMetal substitution of molecular sieve systems is a major driving force in developing novel catalytic processes to meet current demands of green chemistry concepts and to achieve sustainability in the chemical industry and in other aspects of our everyday life. The advantages of metal-substituted molecular sieves include high surface areas, molecular sieving effects, confinement effects, and active site and morphology variability and stability. The present review aims to comprehensively and critically assess recent advances in the area of tetra- (Ti, Sn, Zr, Hf) and pentavalent (V, Nb, Ta) metal-substituted molecular sieves, which are mainly characterized for their Lewis acidic active sites.
View Article and Find Full Text PDFSupported metal nanoparticles are used as heterogeneous catalysts but often deactivated due to sintering at high temperatures. Confining metal species into a porous matrix reduces sintering, yet supports rarely provide additional stabilization. Here, we used the silanol-rich layered zeolite IPC-1P to stabilize ultra-small Rh nanoparticles.
View Article and Find Full Text PDFInvited for the cover of this issue are Maksym Opanasenko and co-workers at Charles University in Prague, IKTS and deepXscan GmbH in Dresden. The image depicts a controllable crystallization mechanism that can be switched from classical to reversed crystal growth by manipulating the interplay between silica particles and the structure-directing agent. Read the full text of the article at 10.
View Article and Find Full Text PDFCrystal growth mechanisms govern a wide range of properties of crystalline materials. Reversed crystal growth is one of the nonclassical mechanisms observed in many materials. However, the reversed crystallization starting from amorphous aggregates and the key factors driving this growth remain elusive.
View Article and Find Full Text PDFPalladium nanoparticles entrapped in porous aromatic frameworks (PAFs) or covalent organic frameworks may promote heterogeneous catalytic reactions. However, preparing such materials as active nanocatalysts usually requires additional steps for palladium entrapment and reduction. This paper reports as a new approach, a simple procedure leading to the self-entrapment of Pd nanoparticles within the PAF structure.
View Article and Find Full Text PDFDirect exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes.
View Article and Find Full Text PDFThe assembly-disassembly-organisation-reassembly (ADOR) process has led to the discovery of numerous zeolite structures, albeit limited to materials with decreased pore size in relation to the parent germanosilicate zeolite. This limitation stems from the rapid decrease in -spacing upon hydrolysis (disassembly). Nevertheless, we have artificially increased the -spacing of layered IPC-1P by intercalating organic species.
View Article and Find Full Text PDFThe determination of the full crystal structure of the uranyl sulfate mineral uranopilite, (UO)(SO)O(OH)·14HO, including the positions of the hydrogen atoms within the corresponding unit cell, has not been feasible to date due to the poor quality of its X-ray diffraction pattern. In this paper, the complete crystal structure of uranopilite is established for the first time by means of first principles solid-state calculations based in density functional theory employing a large plane wave basis set and pseudopotential functions. The computed unit-cell parameters and structural data for the non-hydrogen atoms are in excellent agreement with the available experimental data.
View Article and Find Full Text PDFZeolites are among the most environmentally friendly materials produced industrially at the Megaton scale. They find numerous commercial applications, particularly in catalysis, adsorption, and separation. Under ambient conditions aluminosilicate zeolites are stable when exposed to water or water vapor.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2020
Zeolites are one of the most important heterogeneous catalysts, with a high number of large-scale industrial applications. While the synthesis of new zeolites remain rather limited, introduction of germanium has substantially increased our ability to not only direct the synthesis of zeolites but also to convert them into new materials post-synthetically. The smaller Ge-O-Ge angles (vs.
View Article and Find Full Text PDFWe report the hydrothermal synthesis and characterization of two uranyl-oxide hydroxy-hydrate compounds with Pr(iii) (U-Pr) and Tb(iii) (U-Tb) ions prepared via direct hydrothermal reactions of lanthanide (Ln = Pr or Tb) ions with a uranyl-oxide hydroxy-hydrate phase, schoepite. Both compounds U-Pr and U-Tb show thin plate morphologies with atomic ratios of 2 (U : Pr) and 6 (U : Tb) and have been characterized by multiple techniques. The layered structures with interlayer hydrated Pr(iii) or Tb(iii) ions formed via uranyl-Pr/Tb interactions have been confirmed by synchrotron single crystal X-ray diffraction studies.
View Article and Find Full Text PDFThe most effective approach to practical exploitation of the layered solids that often have unique valuable properties-such as graphene, clays, and other compounds-is by dispersion into colloidal suspensions of monolayers, called liquid exfoliation. This fundamentally expected behavior can be used to deposit monolayers on supports or to reassemble into hierarchical materials to produce, by design, catalysts, nanodevices, films, drug delivery systems, and other products. Zeolites have been known as extraordinary catalysts and sorbents with three-dimensional structures but emerged as an unexpected new class of layered solids contributing previously unknown valuable features: catalytically active layers with pores inside or across.
View Article and Find Full Text PDFThe full crystal structure of the copper-uranyl tetrahydroxide mineral (vandenbrandeite), including the positions of the hydrogen atoms, is established by the first time from X-ray diffraction data taken from a natural crystal sample from the Musonoi Mine, Katanga Province, Democratic Republic of Congo. The structure is verified using first-principles solid-state methods. From the optimized structure, the mechanical and dynamical stability of vandenbrandeite is studied and a rich set of mechanical properties are determined.
View Article and Find Full Text PDFOwing to the significant difference in the numbers of simulated and experimentally feasible zeolite structures, several alternative strategies have been developed for zeolite synthesis. Despite their rationality and originality, most of these techniques are based on trial-and-error, which makes it difficult to predict the structure of new materials. Assembly-Disassembly-Organization-Reassembly (ADOR) method overcoming this limitation was successfully applied to a limited number of structures with relatively stable crystalline layers (UTL, UOV, *CTH).
View Article and Find Full Text PDFThe successful synthesis of hierarchically structured titanium silicalite-1 (TS-1) with large intracrystalline macropores by steam-assisted crystallisation of mesoporous silica particles is reported. The macropore topology was imaged in 3D by using electron tomography and synchrotron radiation-based ptychographic X-ray computed tomography, revealing interconnected macropores within the crystals accounting for about 30 % of the particle volume. The study of the macropore formation mechanism revealed that the mesoporous silica particles act as a sacrificial macropore template during the synthesis.
View Article and Find Full Text PDFWe have synthesized two uranyl oxide hydrate (UOH) phases incorporating La(III) or Nd(III) ions under hydrothermal conditions. Investigations with scanning electron microscopy and transmission electron microscopy (TEM) revealed thin-plate morphologies with a U-to-Ln atomic ratio of 2:1 (Ln = La or Nd), while single-crystal X-ray diffraction and TEM electron diffraction studies confirmed that both UOH phases crystallized in the trigonal 31 space group with uranyl oxide layered structures incorporating La(III)/Nd(III) ions as interlayer species. Vibrational spectroscopic studies revealed typical vibrational modes for U ions, with the derived U═O bond lengths being comparable to the values reported on other UOH phases.
View Article and Find Full Text PDFThe crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite, Pb(UO)(SiO)·HO, are investigated by means of first-principles solid-state methods based on density functional theory using plane waves and pseudopotentials. The computed unit cell parameters, bond lengths and angles and X-ray powder pattern of kasolite are found to be in very good agreement with their experimental counterparts. The calculated hydrogen atom positions and associated hydrogen bond structure in the unit cell of kasolite confirmed the hydrogen bond scheme previously determined from X-ray diffraction data.
View Article and Find Full Text PDFHigh-silica zeolites, some of the most important and widely used catalysts in industry, have potential for application across a wide range of traditional and emerging technologies. The many structural topologies of zeolites have a variety of potential uses, so a strong drive to create new zeolites exists. Here, we present a protocol, the assembly-disassembly-organization-reassembly (ADOR) process, for a relatively new method of preparing these important solids.
View Article and Find Full Text PDFCatalysis is undergoing a major transition resulting from significant changes in chemical and energy production. To honor the 50th anniversary of establishing the Jerzy Haber Institute of Catalysis and Surface Chemistry, this Essay discusses, from a forward-looking, personal and somewhat provocative perspective, the needs and gaps of catalysis to address the ongoing transition in chemistry and energy from a sustainability perspective. The focus is on a few selected aspects identified as crucial: i) The precise synthesis of catalytic materials, particularly focusing on mesoporous molecular sieves, metal-organic frameworks, and zeolites (particularly two-dimensional type); ii) advanced catalyst characterization methods; iii) new concepts and approaches needed in catalysis to meet the demands of a field of energy and chemistry in transition.
View Article and Find Full Text PDF