Limestone (LS) and stabilised secondary spruce chips (SCs) utilisation in wood-cement composites is still an unexplored area. Therefore, the main objective of the research presented here is the assessment of the long-term behaviour of cement-bonded particleboards (CBPs) modified by LS and SCs. Cement (CE) was replaced by 10% of LS, and spruce chips by 7% of SCs.
View Article and Find Full Text PDFThis article addresses the potential use of secondary polymer fibres in the field of structural concrete as a replacement for primary polymer fibres (mainly polypropylene/PP/), which are used in concrete to enhance its resistance when exposed to high temperatures (especially in the case of fire). Research has shown that, in addition to PP fibres, polyethylene terephthalate/PET/fibres, produced by recycling packaging materials (mainly PET bottles), can also be used as an alternative. These fibres are industrially produced in similar dimensions as PP fibres and exhibit similar behaviour when added to fresh and hardened concrete.
View Article and Find Full Text PDFThis article presents research on the behavior of cement-bonded particleboards under mechanical stress caused by the static load. The composition of the boards was modified using alternative raw materials-dust (DU) forming during the processing of cement-fibre boards and particle mixture (PM) generated in the production of cement-bonded particleboards. The particleboards (1-year-old) were subjected to an adverse environment (100 to 250 frost cycles).
View Article and Find Full Text PDF