Publications by authors named "Jirawat Pratoomwun"

allele has been identified as the genetic determinant of dapsone hypersensitivity syndrome (DHS) among leprosy and non-leprosy patients in several studies. Dapsone hydroxylamine (DDS-NHOH), an active metabolite of dapsone, has been believed to be responsible for DHS. However, studies have not highlighted the importance of other genetic polymorphisms in dapsone-induced severe cutaneous adverse reactions (SCAR).

View Article and Find Full Text PDF

-positive patients in Thailand can develop frequent co-trimoxazole hypersensitivity reactions. This study aimed to characterize drug-specific T cells from three co-trimoxazole hypersensitive patients presenting with either Stevens-Johnson syndrome or drug reaction with eosinophilia and systemic symptoms. Two of the patients carried the HLA allele of interest, namely .

View Article and Find Full Text PDF

HLA-B∗13:01 is associated with dapsone (DDS)-induced hypersensitivity, and it has been shown that CD4+ and CD8+ T cells are activated by DDS and its nitroso metabolite (nitroso dapsone [DDS-NO]). However, there is a need to define the importance of the HLA association in the disease pathogenesis. Thus, DDS- and DDS-NO‒specific CD8+ T-cell clones (TCCs) were generated from hypersensitive patients expressing HLA-B∗13:01 and were assessed for phenotype and function, HLA allele restriction, and killing of target cells.

View Article and Find Full Text PDF
Article Synopsis
  • A case-control study was conducted to examine the connection between genetic variants in HLA and CYP2C9 and severe cutaneous adverse reactions (SCARs) induced by co-trimoxazole (CTX) in Thai patients.
  • The study included 30 patients with CTX-induced SCARs (18 with SJS/TEN and 12 with DRESS) and compared them to 91 CTX-tolerant controls and 150 individuals from the general population.
  • Results revealed specific genetic associations: HLA-B*15:02 and HLA-C*08:01 were linked to SJS/TEN, while HLA-B*13:01 was associated with DRESS, particularly in HIV-infected patients.
View Article and Find Full Text PDF

Human leukocyte antigen (HLA) class I and II are known to have association with severe cutaneous adverse reactions (SCARs) when exposing to certain drug treatment. Due to genetic differences at population level, drug hypersensitivity reactions are varied, and thus common pharmacogenetics markers for one country might be different from another country, for instance, is associated with carbamazepine (CBZ)-induced SCARs in European and Japanese while is associated with CBZ-induced Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) among Taiwanese and Southeast Asian. Such differences pose a major challenge to prevent drug hypersensitivity when pharmacogenetics cannot be ubiquitously and efficiently translated into clinic.

View Article and Find Full Text PDF

Lamotrigine (LTG) is commonly used for treatment of epilepsy and bipolar disorder. It is one of the common cause of cutaneous adverse drug reactions (CADR). Clinical symptoms of LTG-induced CADR range from maculopapular exanthema (MPE) to severe cutaneous adverse reactions (SCAR).

View Article and Find Full Text PDF

Objectives: A previous publication in Chinese leprosy patients showed that the HLA-B*13:01 allele is a strong genetic marker for dapsone-induced drug hypersensitivity reactions, however there are no data describing whether HLA-B*13:01 is a valid marker for prediction of dapsone-induced drug hypersensitivity reactions in other ethnicities or nonleprosy patients. The aim of this study is to investigate whether there is an association between HLA genotypes and dapsone-induced severe cutaneous adverse reactions (SCARs) in Thai nonleprosy patients.

Patients And Methods: HLA-B genotypes of 15 patients with dapsone-induced SCARs (11 drug reaction with eosinophilia and systemic symptoms, 4 Stevens-Johnson syndrome/toxic epidermal necrolysis), 29 control patients, and 986 subjects from the general Thai population were determined by the reverse PCR sequence-specific oligonucleotides probe.

View Article and Find Full Text PDF

The present study sought to investigate the genetic variants in drug metabolizing enzyme and transporter (DMET) genes associated with steady-state plasma concentrations of risperidone among Thai autism spectrum disorder (ASD) patients. ASD patients taking risperidone for at least 1 month were enrolled for this pharmacogenomic study. Genotyping profile was obtained using Affymetrix DMET Plus array interrogating 1931 variants in 231 genes.

View Article and Find Full Text PDF